The Experimental Study on Bearing Capacity of Reinforced Concrete Structure with Different Reinforce Methods

2014 ◽  
Vol 936 ◽  
pp. 1438-1441
Author(s):  
Qing Yi Liu ◽  
Xiao Mei Liu

Three reinforcement materials with steel plate, epoxies resin sheet, and glass fiber sheet adhering to failed reinforced concrete beams (RC beams) were used to improve the bearing capacity of Reinforced Concrete beams in the paper. The test results shows all the three materials were proved satisfied with bearing capacity increasing request. Strengthening effects with steel plate and epoxies resin sheet were more obvious.

2008 ◽  
Vol 385-387 ◽  
pp. 41-44 ◽  
Author(s):  
Shi Qi Cui ◽  
Jin Shan Wang ◽  
Zhao Zhen Pei ◽  
Zhi Liu

Reinforced concrete beams strengthened with externally bonded CFRP sheet and prestressed CFRP are analyzed in this paper. Crack developments and displacements with curvatures for different beams are analyzed. Test results show that prestressed CFRP are able to control the development of macro cracks in concrete and prestressed CFRP is an effective method to improve the toughness of concrete, reduce strengthening cost and meanwhile enhance bearing capacity of concrete beams.


2018 ◽  
Vol 11 (4) ◽  
pp. 810-833
Author(s):  
J. H. CANAVAL ◽  
T. J. DA SILVA ◽  
A. C. SANTOS

Abstract This work is based on an experimental investigation of reinforced concrete beams strengthened to flexure for wrapping applying a type of metallic connector in the bond substrate/groute. The experimental program consisted of 5 beams used for reference (without strengthening), 5 beams reinforced with surface brushed texture substrate and 5 beams with metal connectors bonded to the substrate. The beams were submitted to four-point load bending test. Initially with a partial loading, executed the strengthening and were finally tested until the break. The strengthening was made up by the increase by graute, on the sides and bottom of the beam and reinforcing. The applied force, the displacement, deformations in steel and in concrete were measured. The reference beams failure by flexing with the calculated charges. The bending strengthening proved efficient, increasing the bearing capacity in 44% and the failure was by shear in the stretch without strengthening. Beams with connectors the increase was higher.


2013 ◽  
Vol 275-277 ◽  
pp. 1264-1267
Author(s):  
Qian Chen ◽  
Ling Yong Liu ◽  
Yang Jun Meng

Through repair and reinforcement of breaking reinforced concrete beams by epoxy resin and carbon cloth, and its experiment, the crack and deformation and bearing capacity as well as ductility of such beams are obtained. Experimental results show that the ultimate bearing capacity of beams after reinforcement increased by 210%, the structure ductility fell by 170%, structural failure form is similar to failure in normal cross section.


2012 ◽  
Vol 201-202 ◽  
pp. 304-307
Author(s):  
Li Yun Pan ◽  
Cheng Chen ◽  
Shun Bo Zhao ◽  
Chang Yong Li

Two large impaired reinforced concrete beams with pre-loading cracks were strengthened by the externally bonded steel frame composed with bottom steel plate and side hoop steel belts. The cyclic loading behaviors of these beams were tested to verify the effectiveness of this strengthening method specified in current Chinese design code. Based on the analyses of test results, the steel plate worked well with bonded concrete under normal service load, the hoop steel belts were necessary to prevent the peeling of bottom steel plate. The strengthened beams were effectively enhanced in flexural stiffness and ultimate resistance, and no new cracks appeared under the normal service load.


2011 ◽  
Vol 69 ◽  
pp. 61-66
Author(s):  
Ling Ling ◽  
Qing Dun Zeng ◽  
Gui Yuan Wang

On the basis of the analytical methods of composite mechanics, a layered shear-lag model was established to study the shear stress distributions of the interfaces between concrete and adhesive layer as well as adhesive layer and fiber sheet or steel plate for fiber sheet/steel plate-reinforced concrete beams with cracks under tension and bending. The results show that the properties of strengthened materials have some effects on the interfacial shear stress. The level of interfacial shear stress increases as both the length of cracks and thickness of fiber sheet or plate are increasing. The influence of crack spacing distance and thickness of adhesive layer on normalized interfacial shear stress is relatively less. The axial tensile force has some impacts on the interfacial shear stresses.


2010 ◽  
Vol 163-167 ◽  
pp. 3772-3776 ◽  
Author(s):  
Hua Ping Liao ◽  
Shi Sheng Fang

Three reinforced concrete (RC) beams strengthened by high-performance ferrocement and two control specimens without strengthened are investigated when RC beams have low compressive strength. Flexural behaviors of strengthened RC beams with high-performance ferrocement are evaluated based on comparative analysis with RC beams. The strengthening results of steel meshes with U-shape (i.e. ferrocements are put onto the tension face and two profile faces) are analyzed. The flexural capacity, deflection and crack width of RC flexural beams are measured, and then comparative analysis is carried out for deformation performance and law of crack development. The test results show that ferrocement contributes greatly to increase the flexural capacity and raise crack-resisting capacity. The experimental results can provide a theoretical reference for actual engineering designs.


2014 ◽  
Vol 578-579 ◽  
pp. 1266-1270
Author(s):  
Qiang Chen ◽  
Ling Yong Liu ◽  
Yang Jun Meng

Through repair and reinforcement of breaking reinforced concrete beams by epoxy resin and carbon cloth, and its experiment, the crack and deformation and bearing capacity as well as ductility of such beams are obtained. Experimental results show that the ultimate bearing capacity of beams after reinforcement increased by 210%, the structure ductility fell by 170%, structural failure form is similar to failure in normal cross section.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Qingfu Li ◽  
Wei Guo ◽  
Chenhui Liu ◽  
Yihang Kuang ◽  
Huitao Geng

In this paper, the flexural characteristics of stainless steel (SS) reinforced concrete beams are studied and analyzed. We mainly focus on their crack mode, failure mode, load-deflection curve, and bearing capacity. Six beams with test parameters, including the diameter of reinforcement, the type of the reinforcement, and the stirrup spacing, were tested in 4-point bending. The test results indicate that the failure mode of SS reinforced concrete beam can be divided into three stages: elastic stage, cracking stage, and failure stage. The midspan section deformation of SS reinforced concrete beam conforms to the assumption of plane section. Under the same reinforcement condition, the normal section and the oblique section bearing capacities of the SS reinforced concrete beams are significantly higher than those of the ordinary reinforced concrete beams. In addition, the prediction of cracking moment and bearing capacity calculated by ACI 318-14 and GB 50010-2010 was also evaluated. The calculation results of the two codes were safe and conservative, and GB 50010-2010 provided more accurate prediction of cracking moments. Furthermore, to verify the reliability of the test results, finite element models were established and the analytical results corroborated well with the test results.


Sign in / Sign up

Export Citation Format

Share Document