Seismic response of liquid storage tanks isolated by sliding bearings

2002 ◽  
Vol 24 (7) ◽  
pp. 909-921 ◽  
Author(s):  
M.K. Shrimali ◽  
R.S. Jangid
2004 ◽  
Vol 11 (1) ◽  
pp. 33-45 ◽  
Author(s):  
M.B. Jadhav ◽  
R.S. Jangid

Seismic response of liquid storage tanks isolated by elastomeric bearings and sliding system is investigated under real earthquake ground motions. The continuous liquid mass of the tank is modeled as lumped masses known as sloshing mass, impulsive mass and rigid mass. The coupled differential equations of motion of the system are derived and solved in the incremental form using Newmark's step-by-step method with iterations. The seismic response of isolated tank is studied to investigate the comparative effectiveness of various isolation systems. A parametric study is also carried out to study the effect of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) aspect ratio of the tank and (ii) the time period of the isolation systems. It was observed that both elastomeric and sliding systems are found to be effective in reducing the earthquake forces of the liquid storage tanks. However, the elastomeric bearing with lead core is found to perform better in comparison to other systems. Further, an approximate model is proposed for evaluation of seismic response of base-isolated liquid storage tanks. A comparison of the seismic response evaluated by the proposed approximate method and an exact approach is made under different isolation systems and system parameters. It was observed that the proposed approximate analysis provides satisfactory response estimates of the base-isolated liquid storage tanks under earthquake excitation.


Author(s):  
Maria Vathi ◽  
Spyros A. Karamanos

Unanchored liquid storage tanks under strong earthquake loading tend to uplift. In the present study, the effects of base uplifting on the seismic response of unanchored tanks are presented with emphasis on elephant’s foot buckling, base plate strength and shell-to-base connection capacity. Towards this purpose, base uplifting mechanics is analyzed through a detailed simulation of the tank using non-linear finite elements, and a static pushover analysis is conducted that considers the hydrodynamic pressure distribution due to seismic loading on the tank wall and the base plate. The uplifting provisions from EN 1998-4 and API 650 Appendix E standards are briefly described. Numerical results for a typical 27.8-meter-diameter steel tank are compared with the above design provisions.


2016 ◽  
Vol 45 (11) ◽  
pp. 1779-1796 ◽  
Author(s):  
Konstantinos Mykoniou ◽  
Christoph Butenweg ◽  
Britta Holtschoppen ◽  
Sven Klinkel

Author(s):  
Akira Maekawa ◽  
Katsuhisa Fujita

A three-dimensional and elastic-plastic dynamic buckling analysis method that takes into consideration fluid-structure coupling and large deformation is proposed in order to accurately simulate the seismic response of cylindrical liquid storage tanks. The results of a dynamic buckling experiment of a tank using seismic motions closely match those of numerical simulation by the proposed method. The mesh size of the analytical model greatly influences the buckling analysis results. Optimization of the size is also discussed.


Author(s):  
Miguel Ormeño ◽  
Tam Larkin ◽  
Nawawi Chouw

Field evidence has established that strong earthquakes can cause severe damage or even collapse of liquid storage tanks. Many tanks worldwide are built near the coast on soft soils of marginal quality. Because of the difference in stiffness between the tank (rigid), foundation (rigid) and the soil (flexible), soil-foundation-structure interaction (SFSI) has an important effect on the seismic response, often causing an elongation of the period of the impulsive mode. This elongation is likely to produce a significant change in the seismic response of the tank and will affect the loading on the structure. An issue not well understood, in the case of unanchored tanks, is uplift of the tank base that usually occurs under anything more than moderate dynamic loading. This paper presents a comparison of the loads obtained using “Appendix E of API STANDARD 650” of the American Petroleum Institute and the “Seismic Design of Storage Tanks” produced by the New Zealand Society for Earthquake Engineering. The seismic response assessed using both codes is presented for a range of tanks incorporating a range of the most relevant parameters in design. The results obtained from the analyses showed that both standards provide similar base shear and overturning moment; however, the results given for the anchorage requirement and uplift are different.


Sign in / Sign up

Export Citation Format

Share Document