The tunnel wall collapse and pothole creation on the hilly terrain surface: a case study of stabilization

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Manoj Namdeo Bagde ◽  
Ajit Kumar ◽  
Subodh Kumbhakar ◽  
Jagdish Chandra Jhanwar
Author(s):  
Sonu Singh ◽  
Joseph Tripura

Abstract Groundwater conditions (GWCs) of an area depends on aquifer hydraulic parameters such as storativity () or storage coefficient (), transmissivity () and hydraulic conductivity (). It plays a key role concerning- groundwater flow modeling, well performance, solute and contaminants transports assessment and also for identification of areas for additional hydrologic testing. Specifically, the geologic formation of a regions control the porosity and permeability, however, in hilly terrain prospecting ground water potential is more challenging due to its limited extent and its occurrences that are usually confined to fractures and weathered rocks. The present study, aims at estimating the hydraulic parameters through pumping test analysis to assess aquifer system formation on hilly terrain from 16 bore wells. The aforesaid parameters were examined through a case study in some selective regions of Hamirpur district of Himachal Pradesh, India. The study area is controlled under two main geological horizons that is the post-tertiary and tertiary. The papers end with comparative results of hydraulic parameters and the aquifers system formation on different GWCs which may be helpful in the outlook of sustainable groundwater resource in the regions.


2019 ◽  
Vol 145 (720) ◽  
pp. 1290-1306 ◽  
Author(s):  
Bradley C. Jemmett‐Smith ◽  
Andrew N. Ross ◽  
Peter F. Sheridan ◽  
John K. Hughes ◽  
Simon B. Vosper

2019 ◽  
Vol 8 (12) ◽  
pp. 537
Author(s):  
Sadra Karimzadeh ◽  
Bakhtiar Feizizadeh ◽  
Masashi Matsuoka

Different methods have been proposed to create seismic site condition maps. Ground-based methods are time-consuming in many places and require a lot of manual work. One method suggests topographic data as a proxy for seismic site condition of large areas. In this study, we mainly focused on the use of an ASTER 1c digital elevation model (DEM) to produce Vs30 maps throughout Iran using a GIS-based regression analysis of Vs30 measurements at 514 seismic stations. These maps were found to be comparable with those that were previously created from SRTM 30c data. The Vs30 results from ASTER 1c estimated the higher velocities better than those from SRTM 30c. In addition, a combination of ASTER 1c and SRTM 30c amplification maps can be useful for the detection of geological and geomorphological units. We also classified the terrain surface of six seismotectonic regions in Iran into 16 classes, considering three important criteria (slope, convexity and texture) to extract more information about the location and morphological characteristics of the stations. The results show that 98% of the stations are situated in six classes, 30% of which are in class 12, 27% in class 6, 17% in class 9, 16% in class 3, 4% in class 3and the rest of the stations are located in other classes.


Author(s):  
L. Fan

Abstract. Structure-from-motion (SfM) is a useful technique for acquiring the topographic information of terrain surfaces for a wide range of geoscience applications. Due to its easy mobilization and cost-effective implementation, the SfM technique may be considered as a favourable alternative to the laser scanning technique in some applications. To this end, it is essential to understand how point cloud data derived using these two different surveying techniques affect the geographic information system (GIS) outputs such as local surface roughness of a terrain surface. In this case study, a small sandy terrain surface was surveyed using a terrestrial laser scanner and the digital camera of a mobile phone, respectively. Analyses were carried out to check the measurement quality of the SfM-derived point cloud and to explore the differences in local surface roughness calculated using the SfM-derived point cloud and that from the scanner, respectively. In addition, it looked into how those differences were affected by different surface roughness descriptors and the associated input parameters (mainly window sizes). Two commonly used methods for describing local surface roughness were considered, consisting of root mean square height and standard deviation of slope.


Sign in / Sign up

Export Citation Format

Share Document