Distance measures for cubic Pythagorean fuzzy sets and its applications to multicriteria decision making

Author(s):  
Pranjal Talukdar ◽  
Palash Dutta
Author(s):  
Zahid Hussain

The construction of divergence measures between two Pythagorean fuzzy sets (PFSs) is significant as it has a variety of applications in different areas such as multicriteria decision making, pattern recognition and image processing. The main purpose of this study to introduce an information-theoretic divergence so-called Pythagorean fuzzy Jensen-Rényi divergence (PFJRD) between two PFSs. The strength and characterization of the proposed Jensen-Rényi divergence between Pythagorean fuzzy sets lie in its practical applications which are very closed to real life. The proposed divergence measure is utilized to induce some useful similarity measures between PFSs. We apply them in pattern recognition, characterization of the similarity between linguistic variables and in multiple criteria decision making. To demonstrate the practical utility and applicability, we present some numerical examples related to daily life with the construction of Pythagorean fuzzy TOPSIS (Techniques of preference similar to ideal solution). Which is utilized to rank the Belt and Road initiative (BRI) projects. Our numerical simulation results show that the suggested measures are well suitable in pattern recognition, characterization of linguistic variables and multi-criteria decision-making environment.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Raja Noshad Jamil ◽  
Tabasam Rashid

Dual hesitant fuzzy geometric Bonferroni mean is defined for dual hesitant fuzzy sets. Different properties of dual hesitant fuzzy geometric Bonferroni mean are discussed. Some special cases are studied in detail for dual hesitant fuzzy geometric Bonferroni mean. In addition, dual hesitant fuzzy weighted geometric Bonferroni mean and dual hesitant fuzzy Choquet geometric Bonferroni mean are proposed. A multicriteria decision-making method is discussed to find the best alternative among different alternatives by using proposed aggregated operators and an illustrated example is also given to understand our proposal.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fatma Dammak ◽  
Leila Baccour ◽  
Adel M. Alimi

This work is interested in showing the importance of possibility theory in multicriteria decision making (MCDM). Thus, we apply some possibility measures from literature to the MCDM method using interval-valued intuitionistic fuzzy sets (IVIFSs). These measures are applied to a decision matrix after being transformed with aggregation operators. The results are compared between each other and concluding remarks are drawn.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hong-yu Zhang ◽  
Jian-qiang Wang ◽  
Xiao-hong Chen

As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete, and inconsistent information existing in the real world. And interval neutrosophic sets (INSs) have been proposed exactly to address issues with a set of numbers in the real unit interval, not just a specific number. However, there are fewer reliable operations for INSs, as well as the INS aggregation operators and decision making method. For this purpose, the operations for INSs are defined and a comparison approach is put forward based on the related research of interval valued intuitionistic fuzzy sets (IVIFSs) in this paper. On the basis of the operations and comparison approach, two interval neutrosophic number aggregation operators are developed. Then, a method for multicriteria decision making problems is explored applying the aggregation operators. In addition, an example is provided to illustrate the application of the proposed method.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Semra Erpolat Taşabat

Decision-making, briefly defined as choosing the best among the possible alternatives within the possibilities and conditions available, is a far more comprehensive process than instant. While in the decision-making process, there are often a lot of criteria as well as alternatives. In this case, methods referred to as Multicriteria Decision-Making (MCDM) are applied. The main purpose of the methods is to facilitate the decision-maker's job, to guide the decision-maker and help him to make the right decisions if there are too many options. In cases where there are many criteria, effective and useful decisions have been taken for granted at the beginning of the 1960s for the first time and supported by day-to-day work. A variety of methods have been developed for this purpose. The basis of some of these methods is based on distance measures. The most known method in the literature based on the concept of distance is, of course, a method called Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). In this study, a new MCDM method that uses distance, similarity, and correlation measures has been proposed. This new method is shortly called DSC TOPSIS to include the initials of distance, similarity, and correlation words, respectively, prefix of TOPSIS name. In the method, Euclidean was used as distance measure, cosine was used as similarity measure, and Pearson correlation was used as relation measure. Using the positive ideal and negative-ideal values obtained from these measures, respectively, a common positive ideal value and a common negative-ideal value were obtained. Afterward DSC TOPSIS is discussed in terms of standardization and weighting. The study also proposed three different new ranking indexes from the ranking index used in the traditional TOPSIS method. The proposed method has been tested on the variables showing the development levels of the countries that have a very important place today. The results obtained were compared with the Human Development Index (HDI) value developed by the United Nations.


Sign in / Sign up

Export Citation Format

Share Document