scholarly journals A Fire Danger Index for the early detection of areas vulnerable to wildfires in the Eastern Mediterranean region

Author(s):  
Panteleimon Xofis ◽  
Georgios Tsiourlis ◽  
Pavlos Konstantinidis

Abstract Wildfires continue to be a major factor of disturbance to Mediterranean ecosystems, and are often associated with significant losses of properties and human lives. Fast fire detection and suppression within the first few minutes after ignition are crucial to successfully managing wildfires and preventing their potentially catastrophic consequences. In this study, remote-sensing methods and data were integrated wih fire behavior simulation and field data to develop a Fire Danger Index (FDI) that can be used to detect the areas most vulnerable to wildfires. This FDI will be integrated into an automatic fire detection system that utilizes optical and thermal land cameras and an unmanned aerial vehicle. The FDI was calculated for a nature reserve in Southern Greece based on fire behavior, pyric history, and anthropogenic influence. Fire behavior was estimated using the FlamMap fire simulation model, while the fuel types to include in the model were determined using state-of-the-art remote-sensing methods and field data. The pyric history was represented by point data on fire occurrences over a period of 40 years. The anthropogenic influence was estimated based on an inverse relationship of this influence with the Euclidean distance from roads and settlements. The calculated FDI demonstrated that a large part of the reserve, including its most ecologically important ecosystems, is highly vulnerable to wildfires. Integrating the FDI into the automatic fire detection system is expected to significantly improve its detection accuracy.

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2025 ◽  
Author(s):  
Jun Hong Park ◽  
Seunggi Lee ◽  
Seongjin Yun ◽  
Hanjin Kim ◽  
Won-Tae Kim

A fire detection system requires accurate and fast mechanisms to make the right decision in a fire situation. Since most commercial fire detection systems use a simple sensor, their fire recognition accuracy is deficient because of the limitations of the detection capability of the sensor. Existing proposals, which use rule-based algorithms or image-based machine learning can hardly adapt to the changes in the environment because of their static features. Since the legacy fire detection systems and network services do not guarantee data transfer latency, the required need for promptness is unmet. In this paper, we propose a new fire detection system with a multifunctional artificial intelligence framework and a data transfer delay minimization mechanism for the safety of smart cities. The framework includes a set of multiple machine learning algorithms and an adaptive fuzzy algorithm. In addition, Direct-MQTT based on SDN is introduced to solve the traffic concentration problems of the traditional MQTT. We verify the performance of the proposed system in terms of accuracy and delay time and found a fire detection accuracy of over 95%. The end-to-end delay, which comprises the transfer and decision delays, is reduced by an average of 72%.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012209
Author(s):  
A Arul ◽  
R S Hari Prakaash ◽  
R Gokul Raja ◽  
V Nandhalal ◽  
N Sathish Kumar

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Fan Wang ◽  
Xiao Jiang ◽  
Xiao Peng Hu

This paper presents a parallel TBB-CUDA implementation for the acceleration of single-Gaussian distribution model, which is effective for background removal in the video-based fire detection system. In this framework, TBB mainly deals with initializing work of the estimated Gaussian model running on CPU, and CUDA performs background removal and adaption of the model running on GPU. This implementation can exploit the combined computation power of TBB-CUDA, which can be applied to the real-time environment. Over 220 video sequences are utilized in the experiments. The experimental results illustrate that TBB+CUDA can achieve a higher speedup than both TBB and CUDA. The proposed framework can effectively overcome the disadvantages of limited memory bandwidth and few execution units of CPU, and it reduces data transfer latency and memory latency between CPU and GPU.


Sign in / Sign up

Export Citation Format

Share Document