scholarly journals Assessing the Long-Term Global Sustainability of the Production and Supply for Stainless Steel

Author(s):  
Harald Ulrik Sverdrup ◽  
Anna Hulda Olafsdottir
Alloy Digest ◽  
2011 ◽  
Vol 60 (12) ◽  

Abstract Kubota Alloy HD (UNS J93005) is a heat-resisting stainless steel casting alloy suitable for long-term service at temperatures up to 1095 deg C (2000 deg F). The nearest wrought equivalent is type 327. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on corrosion resistance as well as casting and joining. Filing Code: SS-1110. Producer or source: Kubota Metal Corporation, Fahramet Division.


Alloy Digest ◽  
2010 ◽  
Vol 59 (5) ◽  

Abstract Kubota Alloy HC is a heat resisting stainless steel casting suitable for long term service at temperatures up to 1093 deg C (2000 deg F). This alloy can maintain resistance to sulfur bearing environments up to 1093 deg C (2000 deg F). This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as casting and joining. Filing Code: SS-1065. Producer or source: Kubota Metal Corporation, Fahramet Division.


2018 ◽  
Vol 122 ◽  
pp. 147-153 ◽  
Author(s):  
Nurizzati Mohd Daud ◽  
Nabillah Athirah Masri ◽  
Nik Ahmad Nizam Nik Malek ◽  
Saiful Izwan Abd Razak ◽  
Syafiqah Saidin

2004 ◽  
Vol 128 (2) ◽  
pp. 370-376 ◽  
Author(s):  
Bruce A. Pint

New materials are being evaluated to replace type 347 stainless steel in microturbine recuperators operating at higher temperatures in order to increase the efficiency of the microturbine. Commercial alloys 120 and 625 are being tested along with potentially lower cost substitutes, such as Fe-20Cr-25Ni and Fe-20Cr-20Ni. Long-term testing of these materials at 650–700 °C shows excellent corrosion resistance to a simulated exhaust gas environment. Testing at 800 °C has been used to further differentiate the performance of the various materials. The depletion of Cr from foils of these materials is being used to evaluate the rate of attack. Although those alloys with the highest Ni and Cr contents have longer lives in this environment, lower alloyed steels may have sufficient protection at a lower cost.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2240 ◽  
Author(s):  
Peter Gregorčič ◽  
Marjetka Conradi ◽  
Luka Hribar ◽  
Matej Hočevar

Controlling the surface wettability represents an important challenge in the field of surface functionalization. Here, the wettability of a stainless-steel surface is modified by 30-ns pulses of a Nd:YAG marking laser (λ = 1064 nm) with peak fluences within the range 3.3–25.1 J cm−2. The short- (40 days), intermediate- (100 days) and long-term (1 year) superhydrophilic-to-(super)hydrophobic transition of the laser-textured surfaces exposed to the atmospheric air is examined by evaluating its wettability in the context of the following parameters: (i) pulse fluence; (ii) scan line separation; (iii) focal position and (iv) wetting period due to contact angle measurements. The results show that using solely a short-term evaluation can lead to wrong conclusions and that the faster development of the hydrophobicity immediately after laser texturing usually leads to lower final contact angle and vice versa, the slower this transition is, the more superhydrophobic the surface is expected to become (possibly even with self-cleaning ability). Depending on laser fluence, the laser-textured surfaces can develop stable or unstable hydrophobicity. Stable hydrophobicity is achieved, if the threshold fluence of 12 J cm−2 is exceeded. We show that by nanosecond-laser texturing a lotus-leaf-like surface with a contact angle above 150° and roll-off angle below 5° can be achieved.


Sign in / Sign up

Export Citation Format

Share Document