scholarly journals When is EROI Not EROI?

Author(s):  
Michael Carbajales-Dale

AbstractThis paper outlines some very real issues with the use of energy return on investment (EROI) for comparing different energy delivery pathways, particularly when directly comparing EROI calculated at the scale of a single energy facility (as a ratio of full lifetime energy transfers) with that calculated at the scale of a geographical region or industry (as a ratio of annual energy flows). While these two ratios may converge, it is only under a very specific set of circumstances. The aim of this paper is to outline this issue in detail and provide some specific examples of the difference between these two ratios for the global wind and photovoltaics industries.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1011
Author(s):  
Bartłomiej Bajan ◽  
Joanna Łukasiewicz ◽  
Agnieszka Poczta-Wajda ◽  
Walenty Poczta

The projected increase in the world’s population requires an increase in the production of edible energy that would meet the associated increased demand for food. However, food production is strongly dependent on the use of energy, mainly from fossil fuels, the extraction of which requires increasing input due to the depletion of the most easily accessible deposits. According to numerous estimations, the world’s energy production will be dependent on fossil fuels at least to 2050. Therefore, it is vital to increase the energy efficiency of production, including food production. One method to measure energy efficiency is the energy return on investment (EROI), which is the ratio of the amount of energy produced to the amount of energy consumed in the production process. The literature lacks comparable EROI calculations concerning global food production and the existing studies only include crop production. The aim of this study was to calculate the EROI of edible crop and animal production in the long term worldwide and to indicate the relationships resulting from its changes. The research takes into account edible crop and animal production in agriculture and the direct consumption of fossil fuels and electricity. The analysis showed that although the most underdeveloped regions have the highest EROI, the production of edible energy there is usually insufficient to meet the food needs of the population. On the other hand, the lowest EROI was observed in highly developed regions, where production ensures food self-sufficiency. However, the changes that have taken place in Europe since the 1990s indicate an opportunity to simultaneously reduce the direct use of energy in agriculture and increase the production of edible energy, thus improving the EROI.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2803
Author(s):  
Wiraditma Prananta ◽  
Ida Kubiszewski

In early 2020, Indonesia implemented the biodiesel 30 (B30) program as an initiative to reduce Indonesia’s dependency on fossil fuels and to protect Indonesia’s palm oil market. However, palm oil has received international criticism due to its association with harmful environmental externalities. This paper analysed whether an investment in palm oil-based biofuel (POBB) provides Indonesia with the ability to achieve its environmental and financial goals. In this research, we performed a meta-analysis on biofuel energy return on investment (EROI) by examining 44 biofuel projects using ten types of biofuel feedstocks from 13 countries between 1995 and 2016. Results showed an average EROI of 3.92 and 3.22 for POBB and other biomass-based biofuels (OBBB), respectively. This shows that if only energy inputs and outputs are considered, biofuels provide a positive energy return. However, biofuels, including those from palm oil, produce externalities especially during land preparation and land restoration. We also compared these EROI biofuel results with other renewable energy sources and further analysed the implications for renewable energies to meet society’s energy demands in the future. Results showed that biofuel gives the lowest EROI compared to other renewable energy sources. Its EROI of 3.92, while positive, has been categorised as “not feasible for development”. If Indonesia plans to continue with its biofuel program, some major improvements will be necessary.


2018 ◽  
Vol 33 (5) ◽  
pp. 1397-1412 ◽  
Author(s):  
Alexandra K. Anderson-Frey ◽  
Yvette P. Richardson ◽  
Andrew R. Dean ◽  
Richard L. Thompson ◽  
Bryan T. Smith

Abstract Between 2003 and 2015, there were 5343 outbreak tornadoes and 9389 isolated tornadoes reported in the continental United States. Here, the near-storm environmental parameter-space distributions of these two categories are compared via kernel density estimation, and the seasonal, diurnal, and geographical features of near-storm environments of these two sets of events are compared via self-organizing maps (SOMs). Outbreak tornadoes in a given geographical region tend to be characterized by greater 0–1-km storm-relative helicity and 0–6-km vector shear magnitude than isolated tornadoes in the same geographical region and also have considerably higher tornado warning-based probability of detection (POD) than isolated tornadoes. A SOM of isolated tornadoes highlights that isolated tornadoes with higher POD also tend to feature higher values of the significant tornado parameter (STP), regardless of the specific shape of the area of STP. For a SOM of outbreak tornadoes, when two outbreak environments with similarly high magnitudes but different patterns of STP are compared, the difference is primarily geographical, with one environment dominated by Great Plains and Midwest outbreaks and another dominated by outbreaks in the southeastern United States. Two specific tornado outbreaks are featured, and the events are placed into their climatological context with more nuance than typical single proximity sounding-based approaches would allow.


2018 ◽  
Vol 22 ◽  
pp. 179-187 ◽  
Author(s):  
Zhaoyang Kong ◽  
Xi Lu ◽  
Xiucheng Dong ◽  
Qingzhe Jiang ◽  
Noah Elbot

2011 ◽  
Vol 3 (12) ◽  
pp. 2323-2338 ◽  
Author(s):  
Yan Hu ◽  
Lianyong Feng ◽  
Charles C.S. Hall ◽  
Dong Tian

When a complex structure is excited in several different ways by different sources, the sea energy balance equations result in a set of linear equations that can be used to calculate loss factors, coupling loss factors or net energy flows and incoming powers. If certain symmetry relations are used, and/or if some prior knowledge about the system is available, the set of linear equations is overdetermined and can be solved by a least square technique. A good indicator for the direction of the energy flow is the SEA temperature of the subsystems. Experiments and computer simulations performed on three plate arrangements gave in general good results when the coupling was weak and there were more than three modes in the frequency band of interest. Not so good results were obtained when a small energy flow has to be measured as the difference of large quantities.


2018 ◽  
pp. 387-404
Author(s):  
Charles A. S. Hall ◽  
Kent Klitgaard

Sign in / Sign up

Export Citation Format

Share Document