scholarly journals Near-Storm Environments of Outbreak and Isolated Tornadoes

2018 ◽  
Vol 33 (5) ◽  
pp. 1397-1412 ◽  
Author(s):  
Alexandra K. Anderson-Frey ◽  
Yvette P. Richardson ◽  
Andrew R. Dean ◽  
Richard L. Thompson ◽  
Bryan T. Smith

Abstract Between 2003 and 2015, there were 5343 outbreak tornadoes and 9389 isolated tornadoes reported in the continental United States. Here, the near-storm environmental parameter-space distributions of these two categories are compared via kernel density estimation, and the seasonal, diurnal, and geographical features of near-storm environments of these two sets of events are compared via self-organizing maps (SOMs). Outbreak tornadoes in a given geographical region tend to be characterized by greater 0–1-km storm-relative helicity and 0–6-km vector shear magnitude than isolated tornadoes in the same geographical region and also have considerably higher tornado warning-based probability of detection (POD) than isolated tornadoes. A SOM of isolated tornadoes highlights that isolated tornadoes with higher POD also tend to feature higher values of the significant tornado parameter (STP), regardless of the specific shape of the area of STP. For a SOM of outbreak tornadoes, when two outbreak environments with similarly high magnitudes but different patterns of STP are compared, the difference is primarily geographical, with one environment dominated by Great Plains and Midwest outbreaks and another dominated by outbreaks in the southeastern United States. Two specific tornado outbreaks are featured, and the events are placed into their climatological context with more nuance than typical single proximity sounding-based approaches would allow.

2019 ◽  
Vol 34 (4) ◽  
pp. 1017-1034 ◽  
Author(s):  
Alexandra K. Anderson-Frey ◽  
Yvette P. Richardson ◽  
Andrew R. Dean ◽  
Richard L. Thompson ◽  
Bryan T. Smith

Abstract The southeastern United States has become a prime area of focus in tornado-related literature due, in part, to the abundance of tornadoes occurring in high-shear low-CAPE (HSLC) environments. Through this analysis of 4133 tornado events and 16 429 tornado warnings in the southeastern United States, we find that tornadoes in the Southeast do indeed have, on average, higher shear and lower CAPE than tornadoes elsewhere in the contiguous United States (CONUS). We also examine tornado warning skill in the form of probability of detection (POD; percent of tornadoes receiving warning prior to tornado occurrence) and false alarm ratio (FAR; percent of tornado warnings for which no corresponding tornado is detected), and find that, on average, POD is better and FAR is worse for tornadoes in the Southeast than for the CONUS as a whole. These measures of warning skill remain consistent even when we consider only HSLC tornadoes. The Southeast also has nearly double the CONUS percentage of deadly tornadoes, with the highest percentage of these deadly tornadoes occurring during the spring, the winter, and around local sunset. On average, however, the tornadoes with the lowest POD also tend to be those that are weakest and least likely to be deadly; for the most part, the most dangerous storms are indeed being successfully warned.


Author(s):  
Evan S. Bentley ◽  
Richard L. Thompson ◽  
Barry R. Bowers ◽  
Justin G. Gibbs ◽  
Steven E. Nelson

AbstractPrevious work has considered tornado occurrence with respect to radar data, both WSR-88D and mobile research radars, and a few studies have examined techniques to potentially improve tornado warning performance. To date, though, there has been little work focusing on systematic, large-sample evaluation of National Weather Service (NWS) tornado warnings with respect to radar-observable quantities and the near-storm environment. In this work, three full years (2016–2018) of NWS tornado warnings across the contiguous United States were examined, in conjunction with supporting data in the few minutes preceding warning issuance, or tornado formation in the case of missed events. The investigation herein examines WSR-88D and Storm Prediction Center (SPC) mesoanalysis data associated with these tornado warnings with comparisons made to the current Warning Decision Training Division (WDTD) guidance.Combining low-level rotational velocity and the significant tornado parameter (STP), as used in prior work, shows promise as a means to estimate tornado warning performance, as well as relative changes in performance as criteria thresholds vary. For example, low-level rotational velocity peaking in excess of 30 kt (15 m s−1), in a near-storm environment which is not prohibitive for tornadoes (STP > 0), results in an increased probability of detection and reduced false alarms compared to observed NWS tornado warning metrics. Tornado warning false alarms can also be reduced through limiting warnings with weak (<30 kt), broad (>1nm) circulations in a poor (STP=0) environment, careful elimination of velocity data artifacts like sidelobe contamination, and through greater scrutiny of human-based tornado reports in otherwise questionable scenarios.


2014 ◽  
Vol 142 (10) ◽  
pp. 3666-3682 ◽  
Author(s):  
Nick K. Beavis ◽  
Timothy J. Lang ◽  
Steven A. Rutledge ◽  
Walter A. Lyons ◽  
Steven A. Cummer

Abstract The use of both total charge moment change (CMC) and impulse charge moment change (iCMC) magnitudes to assess the potential of a cloud-to-ground (CG) lightning stroke to induce a mesospheric sprite has been well described in the literature, particularly on a case study basis. In this climatological study, large iCMC discharges for thresholds of &gt;100 and &gt;300 C km in both positive and negative polarities are analyzed on a seasonal basis. Also presented are local solar time diurnal distributions in eight different regions covering the lower 48 states as well as the adjacent Atlantic Ocean, including the Gulf Stream. The seasonal maps show the predisposition of large positive iCMCs to dominate across the northern Great Plains, with large negative iCMCs favored in the southeastern United States year-round. During summer, the highest frequency of large positive iCMCs across the upper Midwest aligns closely with the preferred tracks of nocturnal mesoscale convective systems (MCSs). As iCMC values increase above 300 C km, the maximum shifts eastward of the 100 C km maximum in the central plains. Diurnal distributions in the eight regions support these conclusions, with a nocturnal peak in large iCMC discharges in the northern Great Plains and Great Lakes, an early to midafternoon peak in the Intermountain West and the southeastern United States, and a morning peak in large iCMC discharge activity over the Atlantic Ocean. Large negative iCMCs peak earlier in time than large positive iCMCs, which may be attributed to the growth of large stratiform charge reservoirs following initial convective development.


2014 ◽  
Vol 29 (3) ◽  
pp. 684-701 ◽  
Author(s):  
Christopher M. Fuhrmann ◽  
Charles E. Konrad ◽  
Margaret M. Kovach ◽  
Jordan T. McLeod ◽  
William G. Schmitz ◽  
...  

Abstract The calendar year 2011 was an extraordinary year for tornadoes across the United States, as it marked the second highest annual number of tornadoes since 1950 and was the deadliest tornado year since 1936. Most of the fatalities in 2011 occurred in a series of outbreaks, highlighted by a particularly strong outbreak across the southeastern United States in late April and a series of outbreaks over the Great Plains and Midwest regions in late May, which included a tornado rated as a category 5 event on the enhanced Fujita scale (EF5) that devastated the town of Joplin, Missouri. While most tornado-related fatalities often occur in outbreaks, very few studies have examined the climatological characteristics of outbreaks, particularly those of varying strength. In this study a straightforward metric to assess the strength, or physical magnitude, of tornado outbreaks east of the Rocky Mountains from 1973 to 2010 is developed. This measure of outbreak strength, which integrates the intensity of tornadoes [Fujita (F)/EF-scale rating] over their distance traveled (pathlength), is more highly correlated with injuries and fatalities than other commonly used variables, such as the number of significant tornadoes, and is therefore more reflective of the potential threat of outbreaks to human life. All outbreaks are then ranked according to this metric and their climatological characteristics are examined, with comparisons made to all other tornadoes not associated with outbreaks. The results of the ranking scheme are also compared to those of previous studies, while the strongest outbreaks from 2011 are ranked among other outbreaks in the modern record, including the April 1974 Super Outbreak.


2014 ◽  
Vol 29 (2) ◽  
pp. 366-376 ◽  
Author(s):  
Timothy A. Coleman ◽  
P. Grady Dixon

Abstract In this paper, an objective analysis of spatial tornado risk in the United States is performed, using a somewhat different dataset than in some previous tornado climatologies. The focus is on significant tornadoes because their reporting frequency has remained fairly stable for several decades. Also, data before 1973 are excluded, since those tornadoes were rated after the fact and were often overrated. Tornado pathlength within the vicinity of a grid point is used to show tornado risk, as opposed to tornado days or the total number of reported tornadoes. The possibility that many tornadoes in the Great Plains were underrated due to the lack of damage indicators, causing a low bias in the number of significant tornadoes there, is mostly discounted through several analyses. The kernel density analysis of 1973–2011 significant tornadoes performed herein shows that the area of highest risk for tornadoes in the United States extends roughly from Oklahoma to Tennessee and northwestern Georgia, with the highest risk in the southeastern United States, from central Arkansas across most of Mississippi and northern Alabama.


2020 ◽  
Vol 12 (4) ◽  
pp. 771-788
Author(s):  
Stephen B. Broomell ◽  
Gabrielle Wong-Parodi ◽  
Rebecca E. Morss ◽  
Julie L. Demuth

AbstractReducing fatalities from tornadoes in the southeastern United States requires considering multiple societal factors, including the risk perceptions that influence how people interpret tornado forecasts and warnings and make protective decisions. This study investigates perceptions of tornado risk in the southeastern United States, operationalized as judgments of tornado likelihood. While it is possible that residents of the Southeast could learn about tornado likelihood in their region from observing the local environment, cognitive-ecological theory from psychology suggests that such judgments of likelihood can be inaccurate, even if other aspects of local knowledge are accurate. This study analyzes data from a survey that elicited different groups’ judgments of tornado likelihood associated with different seasons, times of day, and storm system types. Results are presented from a representative sample of Southeastern residents and are compared with a sample of tornado experts (who have extensive knowledge about the likelihood of Southeastern tornadoes) and a representative sample of Great Plains residents. Overall, the analysis finds that many members of the Southeastern public deviate from the expert sample on tornado likelihood, especially for winter and overnight tornadoes. These deviations from expert opinion mimic the judgments of the Great Plains public. This study demonstrates how psychological theory and a decision science approach can be used to identify potential gaps in public knowledge about hazardous weather risks, and it reveals several such potential gaps. Further research is needed to understand the reasons for deviations between public and expert judgments, evaluate their effects on protective decision-making, and develop strategies to address them.


2014 ◽  
Vol 29 (4) ◽  
pp. 828-853 ◽  
Author(s):  
Jason M. Davis ◽  
Matthew D. Parker

Abstract Tornadoes occurring in environments characterized by strong vertical wind shear [0–6-km bulk wind difference ≥35 knots (kt; 1 kt = 0.51 m s−1) (18 m s−1)] but low CAPE (&lt;500 J kg−1) are an important challenge for forecasters, especially in the mid-Atlantic and southeastern United States. In this study, 95 tornadic and 135 nontornadic vortices were tracked in high-shear, low-CAPE (HSLC) environments. Values of azimuthal shear were recorded along the vortex tracks, and operationally relevant radar reflectivity signatures were also manually identified in association with these vortices. Statistically significant differences in azimuthal shear were found between tornadic and nontornadic vortices within 60 km of the radar, particularly near the surface. Although there were significant differences between tornadic and nontornadic vortices from nonsupercells (primarily quasi-linear convective systems), this was not the case for supercellular vortices. Beyond 60 km from the radar, no statistically significant differences were found. Numerous reflectivity signatures were also studied, including hook echoes and weak-echo regions associated with supercell vortices, as well as rear-inflow notches, bowing segments, and forward-inflow notches associated with nonsupercell vortices. These signatures were found to have a high probability of detection close to the radar, but also a high false alarm rate, and were observed much less often &gt;100 km from the radar. Overall, while azimuthal shear and radar reflectivity signatures show the potential for high probability of detection in close proximity to operational radars, high false alarm rates, and short lead times appear to be an unavoidable trade-off in HSLC environments.


2014 ◽  
Vol 21 (2) ◽  
pp. 827-842 ◽  
Author(s):  
Kimberly A. Novick ◽  
A. Christopher Oishi ◽  
Eric J. Ward ◽  
Mario B. S. Siqueira ◽  
Jehn-Yih Juang ◽  
...  

Author(s):  
Makenzie J. Krocak ◽  
Harold E. Brooks

AbstractWhile many studies have looked at the quality of forecast products, few have attempted to understand the relationship between them. We begin to consider whether or not such an influence exists by analyzing storm-based tornado warning product metrics with respect to whether they occurred within a severe weather watch and, if so, what type of watch they occurred within.The probability of detection, false alarm ratio, and lead time all show a general improvement with increasing watch severity. In fact, the probability of detection increased more as a function of watch-type severity than the change in probability of detection during the time period of analysis. False alarm ratio decreased as watch type increased in severity, but with a much smaller magnitude than the difference in probability of detection. Lead time also improved with an increase in watch-type severity. Warnings outside of any watch had a mean lead time of 5.5 minutes, while those inside of a particularly dangerous situation tornado watch had a mean lead time of 15.1 minutes. These results indicate that the existence and type of severe weather watch may have an influence on the quality of tornado warnings. However, it is impossible to separate the influence of weather watches from possible differences in warning strategy or differences in environmental characteristics that make it more or less challenging to warn for tornadoes. Future studies should attempt to disentangle these numerous influences to assess how much influence intermediate products have on downstream products.


2019 ◽  
Vol 11 (3) ◽  
pp. 521-534 ◽  
Author(s):  
Brooke Fisher Liu ◽  
Michael Egnoto ◽  
JungKyu Rhys Lim

Abstract Mobile home residents experience higher fatality rates from tornadoes than “fixed home” residents. Yet, research on how mobile home residents understand and respond to tornado warnings is lacking. Such research can help meteorologists and their partners better communicate tornado risk. We conducted four surveys with residents of the southeastern United States. This region has the highest concentration of tornado fatalities and killer tornadoes, in part because of the high density of mobile homes. Findings reveal that today’s tornado warning system inadequately prepares mobile home residents to respond safely to tornadoes. The study offers recommendations for how to improve tornado communication for mobile and fixed home residents.


Sign in / Sign up

Export Citation Format

Share Document