Investigation of photon energy absorption properties for some biomolecules

2019 ◽  
Vol 30 (7) ◽  
Author(s):  
Mohammed Sultan Al-Buriahi ◽  
Halil Arslan ◽  
Baris T. Tonguc
2021 ◽  
Vol 11 (12) ◽  
pp. 5445
Author(s):  
Shengyong Gan ◽  
Xingbo Fang ◽  
Xiaohui Wei

The aim of this paper is to obtain the strut friction–touchdown performance relation for designing the parameters involving the strut friction of the landing gear in a light aircraft. The numerical model of the landing gear is validated by drop test of single half-axle landing gear, which is used to obtain the energy absorption properties of strut friction in the landing process. Parametric studies are conducted using the response surface method. Based on the design of the experiment results and response surface functions, the sensitivity analysis of the design variables is implemented. Furthermore, a multi-objective optimization is carried out for good touchdown performance. The results show that the proportion of energy absorption of friction load accounts for more than 35% of the total landing impact energy. The response surface model characterizes well for the landing response, with a minimum fitting accuracy of 99.52%. The most sensitive variables for the four landing responses are the lower bearing width and the wheel moment of inertia. Moreover, the max overloading of sprung mass in LC-1 decreases by 4.84% after design optimization, which illustrates that the method of analysis and optimization on the strut friction of landing gear is efficient for improving the aircraft touchdown performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoqin Hao ◽  
Jia Yu ◽  
Weidong He ◽  
Yi Jiang

To solve the problem of the effective cushioning of fast-moving mechanical components in small ring-shaped spaces, the factors affecting the compression and energy absorption properties of small-sized hollow metal tubes were studied. Simulation models were constructed to analyse the influences of tube diameter, wall thickness, relative position, and number of stacked components on the compression and energy absorption properties. The correctness of the simulation method and its output were verified by experiments, which proved the effectiveness of compression and energy absorption properties of small-sized thin-walled metal tubes. The research provides support for the application of metal tube buffers in armament launch technology and engineering practice.


2010 ◽  
Vol 37 (3) ◽  
pp. 422-427 ◽  
Author(s):  
Tejbir Singh ◽  
Rajni ◽  
Updesh Kaur ◽  
Parjit S. Singh

2003 ◽  
Author(s):  
Atsushi Yokoyama ◽  
Tamotsu Nakatani ◽  
Motoharu Tateishi ◽  
Akihiko Gotoh

2011 ◽  
Vol 121-126 ◽  
pp. 75-79
Author(s):  
Bo Young Hur ◽  
Rui Zhao

The compressive behaviors of AZ31-Zr foams using Ca particles as thickening agent and CaCO3 powder as foaming agent were investigated in this study. The porosity was about 48.7%~72.9%, pore size was between 0.43~0.97 mm, and homogenous pore structures were obtained. Mechanical properties of AZ31 Mg alloy foams were investigated by means of UTM. The cellular AZ31 Mg foams possess superior comprehensive mechanical properties. The energy absorption characteristics and the effects of compression behavior on the energy absorption properties for the cellular AZ31 Mg foams have been investigated and discussed. The results show that with the addition of Zr, the Mg alloy foam has the highest energy absorption value of 16.26 MJ/m3 and the hardness value of 81.8 HV, which is much higher than that of the foams fabricated without Zr.


2010 ◽  
Vol 165 (2) ◽  
pp. 240-244 ◽  
Author(s):  
Tejbir Singh ◽  
Updesh Kaur ◽  
Shivali Tandon ◽  
Parjit S. Singh

2012 ◽  
Vol 54 (3) ◽  
pp. 578-586 ◽  
Author(s):  
N. Kucuk ◽  
Z. Tumsavas ◽  
M. Cakir

Sign in / Sign up

Export Citation Format

Share Document