scholarly journals Sensitivity of the area method with mono isotopic fission chambers to reactivity changes in subcritical nuclear reactors

2021 ◽  
Vol 32 (10) ◽  
Author(s):  
Jerzy A. Janczyszyn ◽  
Grażyna Domańska ◽  
Przemysław Stanisz

AbstractHigh-level waste is an important safety issue in the development of nuclear power. A proposed solution is the transmutation of waste in fast reactors. The exclusion of the risk of supercriticality by using subcritical reactors is currently under development. Controlling the subcriticality level in such reactors presents difficulties. A problem is posed by the so-called space effect observed when using in reactors many neutron detectors in different locations of the core and reflector. Reactivity obtained from measurements, for example, by the Sjöstrand method, differs by nonnegligible values. Numerical corrections can partially improve this situation. The use of a monoisotopic fission chamber set, designed for a given reactor, when each chamber is intended for a specific position in the system, can improve the situation. A question arises about the sensitivity of the results to reactivity changes. This issue is analyzed by computer simulation for possible fissionable and fissile nuclides for the total range of control rod insertion, changes in reactor fuel enrichment, and fuel temperature. The tested sensitivity was satisfactory at most levels from several dozen to several hundred pcm. A case study was conducted using the VENUS-F core model.

Author(s):  
Andre´ Voßnacke ◽  
Wilhelm Graf ◽  
Roland Hu¨ggenberg ◽  
Astrid Gisbertz

The revised German Atomic Act together with the Agreement between the German Government and the German Utilities of June 11, 2001 form new boundary conditions that considerably influence spent fuel strategies by stipulation of lifetime limitations to nuclear power plants and termination of reprocessing. The contractually agreed return of reprocessing residues comprises some 156 casks containing vitrified highly active waste, the so-called HAW or glass canisters, coming form irradiated nuclear fuel assemblies to be shipped from COGEMA, France and BNFL, UK to Germany presumably until 2011. Several hundred casks with compacted residues and other waste will follow. The transports are scheduled presumably beyond 2020. The central interim storage facilities in Ahaus and Gorleben, formerly intended to accumulate up to 8,000 t of heavy metal (HM) of spent fuel from German nuclear power plants, offer sufficient capacity to receive the totality of residues to be returned from reprocessing abroad. GNB has developed, tested, licensed, fabricated, loaded, transported and stored a large number of casks for spent fuel and is one of the world leaders for delivering spent fuel and high level waste casks. Long-term intermediate storage of spent fuel is carried out under dry conditions using these casks that are licensed for transport as well as for storage. Standardized high performance casks such as the types CASTOR® HAW 20/28 CG, CASTOR® V/19 and CASTOR® V/52 meet the needs of most nuclear power plants in Germany. Up to now GNS has co-ordinated the loading and transport of 27 casks loaded with 28 canisters each from COGEMA back to Germany for storage in Gorleben for up to 40 years. In all but one case the cask type CASTOR® HAW 20/28 CG has been used.


Estimates are given of the total quantities of radioactivity, and of the contribution from different isotopes to this total, arising in the wastes from civil nuclear power generation; the figures are normalized to 1 GW (e) y of power production. The intensity of the heat and y-radiation emitted by the spent fuel has been calculated, and their decrease as the radioactivity decays. Reprocessing the spent fuel results in 95% or more of the fission products and higher actinides being concentrated in a small volume of high-level, heat-emitting waste. The total decay curve of unreprocessed spent fuel or of the separated high-level waste is dominated by the decay of some fission products for a few hundred years and then by the decay of some actinide isotopes for some tens of thousands of years. The residual activity is compared with that of the original uranium ore. Some of the long-lived activity will appear in other waste streams, particularly on the fuel cladding, and the volumes and activities of these wastes arising in this country are recorded. The long-lived activity arising from reactor decommissioning will be small compared with the annual arisings from the fuel cycle.


1997 ◽  
Vol 506 ◽  
Author(s):  
J.W. Schneider ◽  
P. Zuidema ◽  
P.A. Smith ◽  
P. Gribi ◽  
M. Hugi ◽  
...  

This paper discusses the results of post-closure safety studies for two different waste streams that, according to current Swiss waste-management concepts, may be co-disposed in a single deep geological repository. The waste streams are:• directly disposed spent UO2 and mixed-oxide (MOX) fuel• vitrified high-level waste from the reprocessing of spent fuelThe inventories are based on a consideration of the anticipated arisings from nuclear power generation in Switzerland. A part (at least) of these arisings will be reprocessed, with the resultant vitrified high-level waste and long-lived intermediate-level waste returned to Switzerland. The Swiss electricity utilities have placed contracts with BNFL (UK) and COGEMA (France) for the reprocessing of about one third of the total arisings of spent fuel from nuclear power generation, assuming an electricity production scenario of 120 GWa(e). The decision as to whether to reprocess the remainder is currently left open, implying that up to two thirds of the arisings could be in the form of unreprocessed spent fuel for direct disposal. For the purposes of the present study, however, it is assumed that the arisings from the full 120 GWa scenario will be either directly disposed or reprocessed.


2016 ◽  
Vol 722 ◽  
pp. 59-65
Author(s):  
Markéta Kočová ◽  
Zdeňka Říhová ◽  
Jan Zatloukal

Nowadays manipulation and depositing of high-level radioactive waste has become the most important issue, which needs to be solved. High-level radioactive waste consists mainly of spent fuel elements from nuclear power plants, which cannot be deposited for long time in surface repositories in the same way as it is possible in case of low and medium level radioactive waste. The most effective and safe solution in longer time horizon seems to be deep geological repository of high level waste. In this process of deposition, large amount of specific conditions needs to be taken into account while designing the whole underground complex, because the materials and structures must fulfil all necessary requirements. Then adequate safety will be ensured.


1985 ◽  
Vol 50 ◽  
Author(s):  
Sten Bjurström ◽  
Tönis Papp

Nuclear power plays an important role in the Swedish power production. From this year on 45–50% of the Swedish electricity will be produced by nuclear power plants, the rest being hydro power.


Author(s):  
Stan Gordelier ◽  
Pa´l Kova´cs

The world is facing energy difficulties for the future, in terms of security of supply and climate change issues. Nuclear power is virtually carbon free and it contributes to energy security, being a quasi-domestic source. Whilst it cannot provide a complete answer to these challenges, it is certainly capable of providing a significant component of the answer. However, nuclear power remains controversial. In order to gain public acceptance, it is widely recognised that a number of key issues need to be addressed, amongst which is resolution of the high-level radioactive waste (HLW) (including spent fuel) disposal issue. This is an important issue for all countries with an existing nuclear programme, whether or not it is intended that nuclear power should be phased out or expanded — the waste already exists and must be managed in any event. It is equally important for countries planning a new nuclear power programme where none has previously existed. Since nuclear power was first developed over fifty years ago, HLW arisings have been stored as an interim measure. It is widely believed by experts (though not by many opponents of the nuclear industry, nor by the public) that deep geological disposal, after a reasonable cooling time in interim storage, is technically feasible and constitutes a safe option [1] at an acceptable cost. The total volume of HLW from nuclear reactors is relatively small. A key issue, however, is the time-scale for developing such a final disposal solution. Considerations of security and inter-generational equity suggest that geological disposal should be implemented as soon as possible irrespective of whether or not new arisings are created. The question of managing HLW is not necessarily related to the issue of building new nuclear power stations. However, many opponents argue that there has been insufficient demonstration of the long-term safety of deep geological disposal. The same opponents also argue that there should be a moratorium on building new nuclear power plants (NPPs) until the issue of long-term management of HLW is resolved. These arguments have a powerful influence on public opinion towards both the construction of a waste repository and the building of new NPPs. The intent of this paper (developed from the current OECD NEA study on “Timing of High Level Waste Disposal”) is to identify and discuss some of the factors influencing the timing of the implementation of a HLW disposal strategy and to demonstrate to decision makers how these factors are affecting country strategies, based on current experience. Determining an optimum timescale of HLW disposal may be affected by a wide range of factors. The study examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on the timing of HLW disposal and can be balanced in a national radioactive waste management strategy taking the social, political and economic environment into account. There is clear evidence that significant fractions of the public still have serious misconceptions with respect to the issues surrounding nuclear waste. The nuclear industry, together with governments in those countries who would like a component of nuclear power in their energy mix, has a responsibility for and a significant challenge in presenting its case to the public.


Author(s):  
Dennis L. Berry ◽  
Bart R. Callan

A global partnership between nuclear energy supplier nations and user nations could enable the safe and secure expansion of nuclear power throughout the world. Although it is likely that supplier nations and their industries would be anxious to sell reactors and fuel services as part of this partnership, their commitment to close the fuel cycle (i.e., permanently take back fuel and high-level waste) remains unclear. At the 2007 Waste Management Symposia in Tucson, Arizona, USA, a distinguished international panel explored fuel take back and waste disposal from the perspective of current and prospective user nations. This paper reports on the findings of that panel and presents a path for policy makers to move forward with the partnership vision.


1994 ◽  
Vol 353 ◽  
Author(s):  
Neil A. Chapman ◽  
Johan Andersson ◽  
Peter Robinson ◽  
Kristina Skagius ◽  
Clas-Otto Wene ◽  
...  

AbstractThe Swedish Nuclear Power Inspectorate is developing a new methodology for the construction of scenarios for radiological consequence analysis as part of its SITE-94 performance assessment project. SITE-94 involves the incorporation of site specific data from the Äspö site into a performance assessment (PA) of a hypothetical high-level waste repository. This paper describes a systems analysis approach that has been developed based on the concept of organising all the events and processes which need to be taken account of in PA into a ‘process system’ and a much smaller residual group which are used to generate scenarios. The methodology used for developing scenarios, producing calculation cases and addressing the various types of uncertainty involved in PA consequence analysis is described.


Author(s):  
Bea Labor ◽  
Staffan Lindskog

A major prerequisite in order for civilian commercial nuclear energy production to qualify as sustainable energy production is that systems for the management of the nuclear waste legacy are in operation. These waste types are present in a range from very low short lived waste (VLLW) to long lived high level waste (HLW) (including the used nuclear fuel). The second prerequisite is that financial responsibilities or other constraints must not be passed on to coming generations. The first condition for qualification corresponds to the Polluters Pays Principle (PPP) which demands that the responsibility for the waste management rests solely with the polluter. The second qualification corresponds to the principle of fairness between generations and thus concerns the appropriate distribution of responsibilities between the generations. It is important to note that these two conditions must be met simultaneously, and that compliance with both is a necessary prerequisite in order for commercial use of nuclear power to qualify as a semi-sustainable energy source. Financial and technical planning for dismantling and decommissioning of nuclear installations cannot be regarded as successful unless it rests upon a distinctive way to describe and explain the well-founded values of different groups of stakeholders. This cumbersome task can be underpinned by transparent and easy to grasp models for calculation and estimation of future environmental liabilities. It essential that a systematic classification is done of all types of costs and that an effort is done to evaluate the precision level in the cost estimates. In this paper, a systematic and transparent way to develop a parametric approach that rest upon basic accounting standards is combined with data about younger stakeholder’s values towards decommissioning and dismantling of nuclear installation. The former entity rests upon theoretical and practical methods from business administration, whilst the latter is based on current survey data retrieved from 667 personal interviews in one town in Poland and one town in Slovakia with a near 100 % response rate. The main conclusions from this field study may be summarised as follows: • Sustainable energy sources are prioritised. • Around one quarter of the respondents regards nuclear power as a future semi-sustainable commercial energy production mode subject to that the waste is managed in a sustainable, environmental friendly and safe way. • The values are to a significant degree positioned on health, safety and environmental (HSE) attributes. • The polluter pays principle is honoured. • There are doubts regarding the compliance with these principles due to risks for delays in the implementation phase of repositories for disposal of the nuclear residues. • 1/5th of the respondents expressed an openness to reprocessing (which is linked to the concept of “new nuclear power”).


Sign in / Sign up

Export Citation Format

Share Document