A Simple Integration Strategy for Multi-component Optimization in Refinery Hydrogen Networks

Author(s):  
Ali Akbar Amooey
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
H. Babaei-Aghbolagh ◽  
Komeil Babaei Velni ◽  
Davood Mahdavian Yekta ◽  
H. Mohammadzadeh

Abstract We investigate the $$ T\overline{T} $$ T T ¯ -like flows for non-linear electrodynamic theories in D(=2n)-dimensional spacetime. Our analysis is restricted to the deformation problem of the classical free action by employing the proposed $$ T\overline{T} $$ T T ¯ operator from a simple integration technique. We show that this flow equation is compatible with $$ T\overline{T} $$ T T ¯ deformation of a scalar field theory in D = 2 and of a non-linear Born-Infeld type theory in D = 4 dimensions. However, our computation discloses that this kind of $$ T\overline{T} $$ T T ¯ flow in higher dimensions is essentially different from deformation that has been derived from the AdS/CFT interpretations. Indeed, the gravity that may be exist as a holographic dual theory of this kind of effective Born-Infeld action is not necessarily an AdS space. As an illustrative investigation in D = 4, we shall also show that our construction for the $$ T\overline{T} $$ T T ¯ operator preserves the original SL(2, ℝ) symmetry of a non-supersymmetric Born-Infeld theory, as well as $$ \mathcal{N} $$ N = 2 supersymmetric model. It is shown that the corresponding SL(2, ℝ) invariant action fixes the relationship between the $$ T\overline{T} $$ T T ¯ operator and quadratic form of the energy-momentum tensor in D = 4.


LWT ◽  
2021 ◽  
Vol 142 ◽  
pp. 111093
Author(s):  
Wei Liu ◽  
Jingping Zhou ◽  
Fangdai Tan ◽  
Hao Yin ◽  
Chunyan Yang ◽  
...  

2018 ◽  
Vol 3 ◽  
pp. 72
Author(s):  
Peter W Daniels ◽  
Anuradha Mukherjee ◽  
Alastair SH Goldman ◽  
Bin Hu

Integrating a desired DNA sequence into yeast genomes is a widely-used genetic manipulation in the budding yeast Saccharomyces cerevisiae. The conventional integration method is to use an integrative plasmid such as pRS or YIplac series as the target DNA carrier. The nature of this method risks multiple integrations of the target DNA and the potential loss of integrated DNA during cell proliferation. In this study, we developed a novel yeast integration strategy based on the widely used CRISPR-Cas9 system and created a set of plasmids for this purpose. In this system, a plasmid bearing Cas9 and gRNA expression cassettes will induce a double-strand break (DSB) inside a biosynthesis gene such as Met15 or Lys2. Repair of the DSB will be mediated by another plasmid bearing upstream and downstream sequences of the DSB and an integration sequence in between. As a result of this repair the sequence is integrated into genome by replacing the biosynthesis gene, the disruption of which leads to a new auxotrophic genotype. The newly-generated auxotroph can serve as a traceable marker for the integration. In this study, we demonstrated that a DNA fragment up to 6.3 kb can be efficiently integrated into the Met15 or Lys2 locus using this system. This novel integration strategy can be applied to various yeasts, including natural yeast isolated from wild environments or different yeast species such as Candida albicans.


2010 ◽  
Vol 18 (3) ◽  
pp. 233-241 ◽  
Author(s):  
Zuwei Liao ◽  
Jingdai Wang ◽  
Yongrong Yang ◽  
Gang Rong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document