Recent Advances in Single Particle Cryo-electron Microscopy and Cryo-electron Tomography to Determine the Structures of Biological Macromolecules

2018 ◽  
Vol 98 (3) ◽  
pp. 231-245 ◽  
Author(s):  
Moumita Dutta
2020 ◽  
Author(s):  
Jennifer N. Cash ◽  
Sarah Kearns ◽  
Yilai Li ◽  
Michael A. Cianfrocco

ABSTRACTRecent advances in single-particle cryo-electron microscopy (cryo-EM) data collection utilizes beam-image shift to improve throughput. Despite implementation on 300 keV cryo-EM instruments, it remains unknown how well beam-image shift data collection affects data quality on 200 keV instruments and how much aberrations can be computationally corrected. To test this, we collected and analyzed a cryo-EM dataset of aldolase at 200 keV using beam-image shift. This analysis shows that beam tilt on the instrument initially limited the resolution of aldolase to 4.9Å. After iterative rounds of aberration correction and particle polishing in RELION, we were able to obtain a 2.8Å structure. This analysis demonstrates that software correction of microscope aberrations can provide a significant improvement in resolution at 200 keV.


2017 ◽  
Author(s):  
Alex J. Noble ◽  
Venkata P. Dandey ◽  
Hui Wei ◽  
Julia Brasch ◽  
Jillian Chase ◽  
...  

AbstractSingle particle cryo-electron microscopy (cryoEM) is often performed under the assumption that particles are freely floating away from the air-water interfaces and in thin, vitreous ice. In this study, we performed fiducial-less tomography on over 50 different cryoEM grid/sample preparations to determine the particle distribution within the ice and the overall geometry of the ice in grid holes. Surprisingly, by studying particles in holes in 3D from over 1,000 tomograms, we have determined that the vast majority of particles (approximately 90%) are adsorbed to an air-water interface. The implications of this observation are wide-ranging, with potential ramifications regarding protein denaturation, conformational change, and preferred orientation. We also show that fiducial-less cryo-electron tomography on single particle grids may be used to determine ice thickness, optimal single particle collection areas and strategies, particle heterogeneity, and de novo models for template picking and single particle alignment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sara Sheibani ◽  
Kaustuv Basu ◽  
Ali Farnudi ◽  
Aliakbar Ashkarran ◽  
Muneyoshi Ichikawa ◽  
...  

AbstractThe biological identity of nanoparticles (NPs) is established by their interactions with a wide range of biomolecules around their surfaces after exposure to biological media. Understanding the true nature of the biomolecular corona (BC) in its native state is, therefore, essential for its safe and efficient application in clinical settings. The fundamental challenge is to visualize the biomolecules within the corona and their relationship/association to the surface of the NPs. Using a synergistic application of cryo-electron microscopy, cryo-electron tomography, and three-dimensional reconstruction, we revealed the unique morphological details of the biomolecules and their distribution/association with the surface of polystyrene NPs at a nanoscale resolution. The analysis of the BC at a single NP level and its variability among NPs in the same sample, and the discovery of the presence of nonspecific biomolecules in plasma residues, enable more precise characterization of NPs, improving predictions of their safety and efficacies.


Author(s):  
Anshul Assaiya ◽  
Ananth Prasad Burada ◽  
Surbhi Dhingra ◽  
Janesh Kumar

Cryo-electron microscopy (CryoEM) has superseded X-ray crystallography and NMR to emerge as a popular and effective tool for structure determination in recent times. It has become indispensable for the characterization of large macromolecular assemblies, membrane proteins, or samples that are limited, conformationally heterogeneous, and recalcitrant to crystallization. Besides, it is the only tool capable of elucidating high-resolution structures of macromolecules and biological assemblies in situ. A state-of-the-art electron microscope operable at cryo-temperature helps preserve high-resolution details of the biological sample. The structures can be determined, either in isolation via single-particle analysis (SPA) or helical reconstruction, electron diffraction (ED) or within the cellular environment via cryo-electron tomography (cryoET). All the three streams of SPA, ED, and cryoET (along with subtomogram averaging) have undergone significant advancements in recent times. This has resulted in breaking the boundaries with respect to both the size of the macromolecules/assemblies whose structures could be determined along with the visualization of atomic details at resolutions unprecedented for cryoEM. In addition, the collection of larger datasets combined with the ability to sort and process multiple conformational states from the same sample are providing the much-needed link between the protein structures and their functions. In overview, these developments are helping scientists decipher the molecular mechanism of critical cellular processes, solve structures of macromolecules that were challenging targets for structure determination until now, propelling forward the fields of biology and biomedicine. Here, we summarize recent advances and key contributions of the three cryo-electron microscopy streams of SPA, ED, and cryoET.


2019 ◽  
Author(s):  
Zhiguo Shang ◽  
Kangkang Song ◽  
Xiaofeng Fu ◽  
Xiaochu Lou ◽  
Nikolaus Grigorieff ◽  
...  

Abstract Recent advances in cryo-electron microscopy (cryo-EM) are paving the way to determining isolated three-dimensional (3D) macromolecular structures at near-atomic resolution using single-particle cryo-electron microscopy (SP-cryo-EM). However, determining the subcellular structures in intact cells and organelles using cryo-electron tomography (cryo-ET) and subtomogram averaging, another cryo-EM technique, with comparable resolution remains a challenge. Current methodologies can only reach a resolution of several nanometers in most samples studied. Here, we introduce a new hybrid method, called Tomography-Guided 3D Reconstruction of Subcellular Structures (TYGRESS) that is able to achieve structural determination of subcellular structures within their natural crowded environment with nanometer-resolution by combining the advantages of cryo-ET and SP-cryo-EM.


2021 ◽  
Vol 118 (50) ◽  
pp. e2108738118
Author(s):  
Matthew Croxford ◽  
Michael Elbaum ◽  
Muthuvel Arigovindan ◽  
Zvi Kam ◽  
David Agard ◽  
...  

Cryo-electron tomography (cryo-ET) allows for the high-resolution visualization of biological macromolecules. However, the technique is limited by a low signal-to-noise ratio (SNR) and variance in contrast at different frequencies, as well as reduced Z resolution. Here, we applied entropy-regularized deconvolution (ER-DC) to cryo-ET data generated from transmission electron microscopy (TEM) and reconstructed using weighted back projection (WBP). We applied deconvolution to several in situ cryo-ET datasets and assessed the results by Fourier analysis and subtomogram analysis (STA).


2021 ◽  
Author(s):  
Matthew Croxford ◽  
Michael Elbaum ◽  
Muthuvel Arigovindan ◽  
Zvi Kam ◽  
David A Agard ◽  
...  

Cryo-electron tomography (cryo-ET) allows for the high resolution visualization of biological macromolecules. However, the technique is limited by a low signal-to-noise ratio and variance in contrast at different frequencies, as well as reduced Z resolution. Here, we applied entropy regularized deconvolution to cryo-ET data generated from transmission electron microscopy and reconstructed using weighted back projection. We applied DC to several in situ cryo-ET data sets, and assess the results by Fourier analysis and subtomogram analysis.


Sign in / Sign up

Export Citation Format

Share Document