Comparison of the Morphology, Structures and Mechanical Properties of Teleost Fish Scales Collected from New Zealand

2019 ◽  
Vol 16 (2) ◽  
pp. 328-336 ◽  
Author(s):  
Deju Zhu ◽  
Chaohui Zhang ◽  
Peng Liu ◽  
Laith A. Jawad
2019 ◽  
Author(s):  
Juliette Saux ◽  
◽  
Brooke Carlson ◽  
Marlene C. Villeneuve ◽  
Samuel J. Hampton

2018 ◽  
Vol 98 (8) ◽  
pp. 1991-1998
Author(s):  
A. L. Ibáñez ◽  
L. A. Jawad

New Zealand rattail fish are of great interest both to biologists who study their phylogenetics and in fisheries. In contrast, their morphological evolution is little studied and poorly understood. Geometric morphometric methods based on scale shape were applied in this study to determine differences among species and genera. Scale shapes were described using seven landmarks, the coordinates of which were subjected to a generalized Procrustes analysis, followed by a principal components analysis. A cross-validated discriminant analysis was applied to assess and compare the size-shape (centroid size plus shape variables) efficacy in the species and the discrimination of the genera. Two main phenetic groups were identified: cluster no. 1 with eight species and cluster no. 2 with six species. Coelorhinchus aspercephalus and Mesovagus antipodum were more separated from the other species in the first cluster. The cross-validated canonical discriminant analysis correctly classified 74% at the genus level, with most misclassifications occurring between Coelorhinchus and Coryphaenoides, whereas the best classified genera were Mesovagus and Trachyrincus. The discrimination of correctly classified species ranged from 41.2 to 100%. The highest correct classification rates were recorded for Coryphaenoides armatus, Coelorhinchus innotabilis, Trachyrincus longirostris and Mesovagus antipodum.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Cyril J.F. Kahn ◽  
Xiong Wang ◽  
Rachid Rahouadj

Although the mechanical properties of ligament and tendon are well documented in research literature, very few unified mechanical formulations can describe a wide range of different loadings. The aim of this study was to propose a new model, which can describe tendon responses to various solicitations such as cycles of loading, unloading, and reloading or successive relaxations at different strain levels. In this work, experiments with cycles of loading and reloading at increasing strain level and sequences of relaxation were performed on white New Zealand rabbit Achilles tendons. We presented a local formulation of thermodynamic evolution outside equilibrium at a representative element volume scale to describe the tendon’s macroscopic behavior based on the notion of relaxed stress. It was shown that the model corresponds quite well to the experimental data. This work concludes with the complexity of tendons’ mechanical properties due to various microphysical mechanisms of deformation involved in loading such as the recruitment of collagen fibers, the rearrangement of the microstructure (i.e., collagens type I and III, proteoglycans, and water), and the evolution of relaxed stress linked to these mechanisms.


2019 ◽  
Vol 29 (2) ◽  
pp. 115-128 ◽  
Author(s):  
Thirumala Vasu Aradhyula ◽  
Da Bian ◽  
A. Babul Reddy ◽  
Yeau-Ren Jeng ◽  
Murthy Chavali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document