Nonlinear Model for Viscoelastic Behavior of Achilles Tendon

2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Cyril J.F. Kahn ◽  
Xiong Wang ◽  
Rachid Rahouadj

Although the mechanical properties of ligament and tendon are well documented in research literature, very few unified mechanical formulations can describe a wide range of different loadings. The aim of this study was to propose a new model, which can describe tendon responses to various solicitations such as cycles of loading, unloading, and reloading or successive relaxations at different strain levels. In this work, experiments with cycles of loading and reloading at increasing strain level and sequences of relaxation were performed on white New Zealand rabbit Achilles tendons. We presented a local formulation of thermodynamic evolution outside equilibrium at a representative element volume scale to describe the tendon’s macroscopic behavior based on the notion of relaxed stress. It was shown that the model corresponds quite well to the experimental data. This work concludes with the complexity of tendons’ mechanical properties due to various microphysical mechanisms of deformation involved in loading such as the recruitment of collagen fibers, the rearrangement of the microstructure (i.e., collagens type I and III, proteoglycans, and water), and the evolution of relaxed stress linked to these mechanisms.

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 40
Author(s):  
Aitor Tejo-Otero ◽  
Felip Fenollosa-Artés ◽  
Isabel Achaerandio ◽  
Sergi Rey-Vinolas ◽  
Irene Buj-Corral ◽  
...  

With the currently available materials and technologies it is difficult to mimic the mechanical properties of soft living tissues. Additionally, another significant problem is the lack of information about the mechanical properties of these tissues. Alternatively, the use of phantoms offers a promising solution to simulate biological bodies. For this reason, to advance in the state-of-the-art a wide range of organs (e.g., liver, heart, kidney as well as brain) and hydrogels (e.g., agarose, polyvinyl alcohol –PVA–, Phytagel –PHY– and methacrylate gelatine –GelMA–) were tested regarding their mechanical properties. For that, viscoelastic behavior, hardness, as well as a non-linear elastic mechanical response were measured. It was seen that there was a significant difference among the results for the different mentioned soft tissues. Some of them appear to be more elastic than viscous as well as being softer or harder. With all this information in mind, a correlation between the mechanical properties of the organs and the different materials was performed. The next conclusions were drawn: (1) to mimic the liver, the best material is 1% wt agarose; (2) to mimic the heart, the best material is 2% wt agarose; (3) to mimic the kidney, the best material is 4% wt GelMA; and (4) to mimic the brain, the best materials are 4% wt GelMA and 1% wt agarose. Neither PVA nor PHY was selected to mimic any of the studied tissues.


2018 ◽  
Vol 115 (32) ◽  
pp. 8137-8142 ◽  
Author(s):  
Zhongyang Xing ◽  
Alessio Caciagli ◽  
Tianyang Cao ◽  
Iliya Stoev ◽  
Mykolas Zupkauskas ◽  
...  

A key objective in DNA-based material science is understanding and precisely controlling the mechanical properties of DNA hydrogels. We perform microrheology measurements using diffusing wave spectroscopy (DWS) to investigate the viscoelastic behavior of a hydrogel made of Y-shaped DNA (Y-DNA) nanostars over a wide range of frequencies and temperatures. We observe a clear liquid-to-gel transition across the melting temperature region for which the Y-DNA bind to each other. Our measurements reveal a cross-over between the elastic G′(ω) and loss modulus G″(ω) around the melting temperature Tm of the DNA building blocks, which coincides with the systems percolation transition. This transition can be easily shifted in temperature by changing the DNA bond length between the Y shapes. Using bulk rheology as well, we further show that, by reducing the flexibility between the Y-DNA bonds, we can go from a semiflexible transient network to a more energy-driven hydrogel with higher elasticity while keeping the microstructure the same. This level of control in mechanical properties will facilitate the design of more sensitive molecular sensing tools and controlled release systems.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5066
Author(s):  
Steffen Czich ◽  
Thomas Wloka ◽  
Holger Rothe ◽  
Jürgen Rost ◽  
Felix Penzold ◽  
...  

The main task of tissue engineering (TE) is to reproduce, replicate, and mimic all kinds of tissues in the human body. Nowadays, it has been proven useful in TE to mimic the natural extracellular matrix (ECM) by an artificial ECM (scaffold) based on synthetic or natural biomaterials to regenerate the physiological tissue/organ architecture and function. Hydrogels have gained interest in the TE community because of their ability to absorb water similar to physiological tissues, thus mechanically simulating the ECM. In this work, we present a novel hydrogel platform based on poly(2-ethyl-2-oxazoline)s, which can be processed to 3D microstructures via two-photon polymerization (2PP) with tunable mechanical properties using monomers and crosslinker with different degrees of polymerization (DP) for future applications in TE. The ideal parameters (laser power and writing speed) for optimal polymerization via 2PP were obtained using a specially developed evaluation method in which the obtained structures were binarized and compared to the computer-aided design (CAD) model. This evaluation was performed for each composition. We found that it was possible to tune the mechanical properties not only by application of different laser parameters but also by mixing poly(2-ethyl-2-oxazoline)s with different chain lengths and variation of the crosslink density. In addition, the swelling behavior of different fabricated hydrogels were investigated. To gain more insight into the viscoelastic behavior of different fabricated materials, stress relaxation tests via nanoindentation experiments were performed. These new hydrogels can be processed to 3D microstructures with high structural integrity using optimal laser parameter settings, opening a wide range of application properties in TE for this material platform.


1999 ◽  
Vol 121 (3) ◽  
pp. 179-185 ◽  
Author(s):  
X. Q. Shi ◽  
W. Zhou ◽  
H. L. J. Pang ◽  
Z. P. Wang

In this study, tensile tests of 63Sn/37Pb solder were carried out at various strain rates from 10−5 s−1 to 10−1 s−1 over a wide temperature range from −40°C to 125°C to study the effect of strain rate and testing temperature on the mechanical properties in a systematic manner. Based on these experimental data, a set of empirical formulae was derived by a statistical method to describe the effect of temperature and strain rate in a quantitative manner and explain the variation in the mechanical properties published in other reports. It is concluded that the empirical formulae can be used to characterize the mechanical properties of 63Sn/37Pb over a wide range of temperatures and strain rates.


Author(s):  
Shank S. Kulkarni ◽  
Alireza Tabarraei

Abstract The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both the strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear visco-hyper elastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive as well as tensile loading conditions at various strain rates. Four parameter Ogden model is used to model the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using a three-parameter standard linear solid (SLS) model. The material parameters of the model are found by curve fitting of the proposed model to the experimental data. Comparison of the proposed model and the experimental data shows that the proposed model can closely reproduce the stress-strain behavior of polyurea under a wide range of strain rates (−6500 to 294 /s).


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
N. S. Aryaeva ◽  
E. V. Koptev-Dvornikov ◽  
D. A. Bychkov

A system of equations of thermobarometer for magnetite-silicate melt equilibrium was obtained by method of multidimensional statistics of 93 experimental data of a magnetite solubility in basaltic melts. Equations reproduce experimental data in a wide range of basalt compositions, temperatures and pressures with small errors. Verification of thermobarometers showed the maximum error in liquidus temperature reproducing does not exceed ±7 °C. The level of cumulative magnetite appearance in the vertical structure of Tsypringa, Kivakka, Burakovsky intrusions predicted with errors from ±10 to ±50 m.


Author(s):  
А.Р. Зарипова ◽  
Л.Р. Нургалиева ◽  
А.В. Тюрин ◽  
И.Р. Минниахметов ◽  
Р.И. Хусаинова

Проведено исследование гена интерферон индуцированного трансмембранного белка 5 (IFITM5) у 99 пациентов с несовершенным остеогенезом (НО) из 86 неродственных семей. НО - клинически и генетически гетерогенное наследственное заболевание соединительной ткани, основное клиническое проявление которого - множественные переломы, начиная с неонатального периода жизни, зачастую приводящие к инвалидизации с детского возраста. К основным клиническим признакам НО относятся голубые склеры, потеря слуха, аномалия дентина, повышенная ломкость костей, нарушения роста и осанки с развитием характерных инвалидизирующих деформаций костей и сопутствующих проблем, включающих дыхательные, неврологические, сердечные, почечные нарушения. НО встречается как у мужчин, так и у женщин. До сих пор не определена степень генетической гетерогенности заболевания. На сегодняшний день известно 20 генов, вовлеченных в патогенез НО, и исследователи разных стран продолжают искать новые гены. В последнее десятилетие стало известно, что аутосомно-рецессивные, аутосомно-доминантные и Х-сцепленные мутации в широком спектре генов, кодирующих белки, которые участвуют в синтезе коллагена I типа, его процессинге, секреции и посттрансляционной модификации, а также в белках, которые регулируют дифференцировку и активность костеобразующих клеток, вызывают НО. Мутации в гене IFITM5, также называемом BRIL (bone-restricted IFITM-like protein), участвующем в формировании остеобластов, приводят к развитию НО типа V. До 5% пациентов имеют НО типа V, который характеризуется образованием гиперпластического каллуса после переломов, кальцификацией межкостной мембраны предплечья и сетчатым рисунком ламелирования, наблюдаемого при гистологическом исследовании кости. В 2012 г. гетерозиготная мутация (c.-14C> T) в 5’-нетранслируемой области (UTR) гена IFITM5 была идентифицирована как основная причина НО V типа. В представленной работе проведен анализ гена IFITM5 и идентифицирована мутация c.-14C>T, возникшая de novo, у одного пациента с НО, которому впоследствии был установлен V тип заболевания. Также выявлены три известных полиморфных варианта: rs57285449; c.80G>C (p.Gly27Ala) и rs2293745; c.187-45C>T и rs755971385 c.279G>A (p.Thr93=) и один ранее не описанный вариант: c.128G>A (p.Ser43Asn) AGC>AAC (S/D), которые не являются патогенными. В статье уделяется внимание особенностям клинических проявлений НО V типа и рекомендуется определение мутации c.-14C>T в гене IFITM5 при подозрении на данную форму заболевания. A study was made of interferon-induced transmembrane protein 5 gene (IFITM5) in 99 patients with osteogenesis imperfecta (OI) from 86 unrelated families and a search for pathogenic gene variants involved in the formation of the disease phenotype. OI is a clinically and genetically heterogeneous hereditary disease of the connective tissue, the main clinical manifestation of which is multiple fractures, starting from the natal period of life, often leading to disability from childhood. The main clinical signs of OI include blue sclera, hearing loss, anomaly of dentin, increased fragility of bones, impaired growth and posture, with the development of characteristic disabling bone deformities and associated problems, including respiratory, neurological, cardiac, and renal disorders. OI occurs in both men and women. The degree of genetic heterogeneity of the disease has not yet been determined. To date, 20 genes are known to be involved in the pathogenesis of OI, and researchers from different countries continue to search for new genes. In the last decade, it has become known that autosomal recessive, autosomal dominant and X-linked mutations in a wide range of genes encoding proteins that are involved in the synthesis of type I collagen, its processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells cause OI. Mutations in the IFITM5 gene, also called BRIL (bone-restricted IFITM-like protein), involved in the formation of osteoblasts, lead to the development of OI type V. Up to 5% of patients have OI type V, which is characterized by the formation of a hyperplastic callus after fractures, calcification of the interosseous membrane of the forearm, and a mesh lamellar pattern observed during histological examination of the bone. In 2012, a heterozygous mutation (c.-14C> T) in the 5’-untranslated region (UTR) of the IFITM5 gene was identified as the main cause of OI type V. In the present work, the IFITM5 gene was analyzed and the de novo c.-14C> T mutation was identified in one patient with OI who was subsequently diagnosed with type V of the disease. Three known polymorphic variants were also identified: rs57285449; c.80G> C (p.Gly27Ala) and rs2293745; c.187-45C> T and rs755971385 c.279G> A (p.Thr93 =) and one previously undescribed variant: c.128G> A (p.Ser43Asn) AGC> AAC (S / D), which were not pathogenic. The article focuses on the features of the clinical manifestations of OI type V, and it is recommended to determine the c.-14C> T mutation in the IFITM5 gene if this form of the disease is suspected.


Sign in / Sign up

Export Citation Format

Share Document