Mechanism of high temperature reduction on iron carbide preparation with low-grade siderite

Author(s):  
Dong Chen ◽  
Ya-nan Lv ◽  
Wei Zhao ◽  
Fei-bao Wu ◽  
Wei-ang Ying
Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1614
Author(s):  
Hongqiang Liu ◽  
Zhicheng Cheng ◽  
Wei Yu ◽  
Gaotian Wang ◽  
Jie Zhou ◽  
...  

High-temperature reduction pretreatment (HTRP) is a process that can significantly improve the core quality of a billet. The existing flow stress data cannot meet the needs of simulation due to lack of high temperature data. To obtain the hot forming process parameters for the high-temperature reduction pretreatment process of 42CrMo steel, a hot compression experiment of 42CrMo steel was conducted on Gleeble-3500 thermal-mechanical at 1200–1350 °C with the rates of deformation 0.001–10 s−1 and the deformation of 60%, and its deformation behavior at elevated temperature was studied. In this study, the effects of flow stress temperature and strain rate on austenite grain were investigated. Moreover, two typical constitutive models were employed to describe the flow stress, namely the Arrhenius constitutive model of strain compensation and back propagation artificial neural network (BP ANN) model. The performance evaluation shows that BP ANN model has high accuracy and stability to predict the curve. The thermal processing maps under strains of 0.1, 0.2, 0.3, and 0.4 were established. Based on the analysis of the thermal processing map, the optimal high reduction process parameter range of 42CrMo is obtained: the temperature range is 1250–1350 °C, and the strain rate range is 0.01–1 s−1.


Langmuir ◽  
2004 ◽  
Vol 20 (8) ◽  
pp. 3021-3023 ◽  
Author(s):  
David A. Fleming ◽  
Mary Elizabeth Williams

2019 ◽  
Vol 4 (31) ◽  
pp. 9058-9064 ◽  
Author(s):  
Yalin Cheng ◽  
Kaiqian Wang ◽  
Biyang Tu ◽  
Yang Xia ◽  
Jiaqian Zhang ◽  
...  

2019 ◽  
Vol 47 (7) ◽  
pp. 741-747 ◽  
Author(s):  
Zhiyuan Chen ◽  
Christiaan Zeilstra ◽  
Jan van der Stel ◽  
Jilt Sietsma ◽  
Yongxiang Yang

JOM ◽  
2019 ◽  
Vol 71 (9) ◽  
pp. 3166-3172 ◽  
Author(s):  
Lu-Zheng Chen ◽  
Cong-bing Wang ◽  
Yong-xing Zheng ◽  
Jin-fang Lv ◽  
Zhen-ning Lai ◽  
...  

2013 ◽  
Vol 77 (1) ◽  
pp. 117-136 ◽  
Author(s):  
B. M. Saumur ◽  
K. Hattori

AbstractFerritchromite is rarely reported in forearc mantle peridotites. This contribution describes ferritchromite alteration and zoned Cr-spinel in serpentinites from the Rio San Juan Complex in the Dominican Republic. These rocks originated from the forearc mantle and protruded along lithosphere-scale faults in the mid Eocene. The cores of the Cr-spinel grains have Cr# ratios [i.e.atomic Cr/(Cr + Al)] between 0.48 and 0.66; such values are relatively high and are considered to represent primary compositions. Relatively high Zn contents in the grain cores (0.46 c 0.95 wt.% ZnO) are also thought to be primary; they reflect exceptionally cool conditions in the northern Caribbean forearc mantle. A progressive change in the zoning of Cr-spinel is recorded in the samples. Weakly zoned grains of Cr-spinel have rims with lower Mg# ratios [i.e.atomic Mg/(Mg + Fe2+)] and slightly higher Cr# ratios than the cores. More strongly zoned grains of Cr-spinel, in addition to low Mg# and high Cr# in their rims, have a marked increase in Fe3+# [i.e.Fe3+/(Fe3+ + Al + Cr)] of up to 0.35 in their rims and are partially coated by Mg-rich chlorite. All grains show core-to-rim decreases in their Zn content and increases in Ti, Mn and V. The association with Mg-rich chlorite and the compositional zoning are reminiscent of those reported for ferritchromite. Ferritchromite (with Fe3+# >0.5) is common in ultramafic rocks in amphibolite-grade terranes; however, the serpentinite samples described herein show little evidence of high-grade metamorphism. The lowtemperature serpentine-group mineral lizardite is dominant and high-temperature antigorite is either very rare or absent; other high-temperature minerals, such as talc, tremolite and cummingtonite, are trace constituents. The observed zoning in the Cr-spinel is thought to represent 'immature' ferritchromite, probably formed in response to a short-lived thermal event. This event appears to have been on too short a timescale to produce either proper ferritchromite or significant quantities of high-temperature minerals. It may be related to the emplacement of the nearby Rio Boba Intrusion, or the upward protrusion of the serpentinites along the lithosphere-scale Septentrional fault zone from the base of the mantle wedge through its hotter interior. We suggest that such alteration is rare in forearc serpentinites because they are not commonly heated during exhumation along the plane of subduction. This work demonstrates that Cr-spinel compositions can be modified by relatively low-grade metamorphism.


Sign in / Sign up

Export Citation Format

Share Document