compositional zoning
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 25)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Dave B Murphy

<p>Metamorphic rocks have the potential to record in their mineral assemblages, mineral compositional zoning, and textures, information about geological changes and processes that occur during tectonic events. Interpretations of metamorphic pressure-temperature (P-T) records have traditionally relied on results of geothermobarometry studies, but that approach is not suitable in every case. Metamorphosed greywacke, which makes up ~95% of the New Zealand Southern Alps, has long proven problematic for traditional geothermobarometry because it develops intractable mineral compositions and/or assemblages, especially at relatively low temperature (greenschist facies) conditions. An alternative forward modelling approach using the computer program THERMOCALC was recently used to extract the first detailed P-T history (P-T path) from such previously intractably difficult "greyschist" rocks from a single site in the New Zealand Southern Alps. The present study is the first attempt to apply those new methods to rocks from another study area, and is the first detailed geological study of the Newton Range in the New Zealand Southern Alps. The Newton Range is a ~15 km-long, east-west trending range located ~30 km southeast of the town of Hokitika, ~110 km northeast of the Franz Josef-Fox Glacier region, and immediately to the east of the Alpine Fault in the Southern Alps, South Island, New Zealand. The rocks in the Newton Range are mainly derived from Torlesse Terrane accretionary prism greywacke and argillite (Alpine Schist, greyschist), together with a large pods of ultramafic rock (part of the Pounamu Ultramafic Belt (PUB)) and minor associated metabasic layers (greenschist), all metamorphosed to greenschist facies conditions. The dominant mineral assemblage in the greyschist (Qtz + Ms+ Bt ± Chl ± Ep ± Pl ± Ilm ± Ttn ± Grt ± Zrn ± Tur ± Ap ± Cal), much like that found elsewhere in the Southern Alps. As elsewhere in the Southern Alps, the dominant high-grade metamorphic mineral assemblages in the Alpine Schist in the Newton Range are inherited. The mineral assemblages, compositions, and some textures thus record evidence of processes that took place during tectonic events, presumably mainly in Cretaceous time, prior to the formation of the modern Southern Alps, which are forming today by the ongoing oblique continent-continent collision of the Pacific Plate against the Australian Plate at the Alpine Fault. Compositional zoning in garnet from the greyschist is an important record of the metamorphic P-T path traversed by the host rock as the garnet grew. Occasionally, garnet from the study area contains an inmost core (stage 0) of unusual (anomalously high- or low-MnO) composition. The cores with extremely low MnO are possibly detrital in origin, and those with extremely high MnO may perhaps have grown in the early tectonic episode that formed the Otago Schist. Typically, garnet shows the following core- to rim zoning sequence. Stages 1 & 2 show a progressive decrease in MnO and increase in FeO from core to rim, with higher MnO cores present in rocks with higher whole-rock MnO compositions. Stage 3 is characterised by a gradual decrease in CaO and signifies the growth of Ca-bearing oligoclase late in the garnet growth history. Stage 4 is a discontinuous overgrowth characterised by an abrupt increase in CaO. Such overgrowths have in the past been attributed to garnet growth accompanying the development of the Alpine Fault mylonite zone in the late Cenozoic. In the Newton Range they were only observed on garnet adjacent to the main outcrop of the PUB at ~4.5km from the Alpine Fault, far from the mylonite zone, so local element availability during decompression (and possibly fluid flow and/or metasomatism) may have played a part in the growth of these rims. A P-T path for Alpine Schist from the Newton Range has been estimated using detailed garnet composition data measured along core-to-rim transects across individual garnets, together with predicted garnet compositions and P-T pseudosection results calculated using THERMOCALC. The P-T path starts at ~3.5kbar/400°C, where both garnet and albite coexist, and increases in pressure and temperature to ~6.5bar/500°C where garnet coexists with both albite and oligoclase. The estimated peak metamorphic conditions probably correspond to peak metamorphic pressures, unlike in the Franz Josef-Fox Glacier region where peak conditions (~9.2kbar and 620°C) probably coincided with peak metamorphic temperatures.</p>


2021 ◽  
Author(s):  
◽  
Dave B Murphy

<p>Metamorphic rocks have the potential to record in their mineral assemblages, mineral compositional zoning, and textures, information about geological changes and processes that occur during tectonic events. Interpretations of metamorphic pressure-temperature (P-T) records have traditionally relied on results of geothermobarometry studies, but that approach is not suitable in every case. Metamorphosed greywacke, which makes up ~95% of the New Zealand Southern Alps, has long proven problematic for traditional geothermobarometry because it develops intractable mineral compositions and/or assemblages, especially at relatively low temperature (greenschist facies) conditions. An alternative forward modelling approach using the computer program THERMOCALC was recently used to extract the first detailed P-T history (P-T path) from such previously intractably difficult "greyschist" rocks from a single site in the New Zealand Southern Alps. The present study is the first attempt to apply those new methods to rocks from another study area, and is the first detailed geological study of the Newton Range in the New Zealand Southern Alps. The Newton Range is a ~15 km-long, east-west trending range located ~30 km southeast of the town of Hokitika, ~110 km northeast of the Franz Josef-Fox Glacier region, and immediately to the east of the Alpine Fault in the Southern Alps, South Island, New Zealand. The rocks in the Newton Range are mainly derived from Torlesse Terrane accretionary prism greywacke and argillite (Alpine Schist, greyschist), together with a large pods of ultramafic rock (part of the Pounamu Ultramafic Belt (PUB)) and minor associated metabasic layers (greenschist), all metamorphosed to greenschist facies conditions. The dominant mineral assemblage in the greyschist (Qtz + Ms+ Bt ± Chl ± Ep ± Pl ± Ilm ± Ttn ± Grt ± Zrn ± Tur ± Ap ± Cal), much like that found elsewhere in the Southern Alps. As elsewhere in the Southern Alps, the dominant high-grade metamorphic mineral assemblages in the Alpine Schist in the Newton Range are inherited. The mineral assemblages, compositions, and some textures thus record evidence of processes that took place during tectonic events, presumably mainly in Cretaceous time, prior to the formation of the modern Southern Alps, which are forming today by the ongoing oblique continent-continent collision of the Pacific Plate against the Australian Plate at the Alpine Fault. Compositional zoning in garnet from the greyschist is an important record of the metamorphic P-T path traversed by the host rock as the garnet grew. Occasionally, garnet from the study area contains an inmost core (stage 0) of unusual (anomalously high- or low-MnO) composition. The cores with extremely low MnO are possibly detrital in origin, and those with extremely high MnO may perhaps have grown in the early tectonic episode that formed the Otago Schist. Typically, garnet shows the following core- to rim zoning sequence. Stages 1 & 2 show a progressive decrease in MnO and increase in FeO from core to rim, with higher MnO cores present in rocks with higher whole-rock MnO compositions. Stage 3 is characterised by a gradual decrease in CaO and signifies the growth of Ca-bearing oligoclase late in the garnet growth history. Stage 4 is a discontinuous overgrowth characterised by an abrupt increase in CaO. Such overgrowths have in the past been attributed to garnet growth accompanying the development of the Alpine Fault mylonite zone in the late Cenozoic. In the Newton Range they were only observed on garnet adjacent to the main outcrop of the PUB at ~4.5km from the Alpine Fault, far from the mylonite zone, so local element availability during decompression (and possibly fluid flow and/or metasomatism) may have played a part in the growth of these rims. A P-T path for Alpine Schist from the Newton Range has been estimated using detailed garnet composition data measured along core-to-rim transects across individual garnets, together with predicted garnet compositions and P-T pseudosection results calculated using THERMOCALC. The P-T path starts at ~3.5kbar/400°C, where both garnet and albite coexist, and increases in pressure and temperature to ~6.5bar/500°C where garnet coexists with both albite and oligoclase. The estimated peak metamorphic conditions probably correspond to peak metamorphic pressures, unlike in the Franz Josef-Fox Glacier region where peak conditions (~9.2kbar and 620°C) probably coincided with peak metamorphic temperatures.</p>


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1204
Author(s):  
Yuan Xue ◽  
Ningyue Sun ◽  
Guowu Li

Previous geochemical and petrological studies have concluded that initially magmatic Nb–Ta mineralization is often modified by post-magmatic hydrothermal fluids; however, there is still a lack of mineralogical evidence for the syenite-related Nb–Ta deposit. From the perspective of Nb–Ta minerals, the pyrochlore supergroup minerals have significance for indicating the fluid evolution of alkaline rock or related carbonatite type Nb–Ta deposits. The Panzhihua–Xichang (Panxi) region is a famous polymetallic metallogenic belt in southwestern China, abound with a huge amount of Nb–Ta mineralized syenitic dikes. This study focuses on the mineral textures and chemical compositions of the main Nb–Ta oxide minerals (including columbite-(Fe), fersmite, fergusonite-(Y), and especially pyrochlore group minerals) in samples from the Baicao and Xiaoheiqing deposits, in the Huili area, Panxi region, to reveal the magma evolution process of syenitic-dike-related Nb–Ta deposits. The Nb–Ta oxides in the Huili syenites are commonly characterized by a specific two-stage texture on the crystal scale, exhibiting a complex metasomatic structure and compositional zoning. Four types of pyrochlore group minerals (pyrochlores I, II, III, and IV) formed in different stages were identified. The euhedral columbite-(Fe), fersmite, and pyrochlores I and II minerals formed in the magmatic fractional crystallization stage. Anhedral pyrochlore III minerals are linked to the activity of magma-derived hydrothermal fluids at the late stages of magma evolution. The pyrochlore IV minerals and fergusonite-(Y) tend to be more concentrated in areas that have undergone strong albitization, which is a typical phenomenon of hydrothermal alteration. These mineralogical phenomena provide strong evidences that the magmatic-hydrothermal transitional stage is the favored model for explaining the Nb–Ta mineralization process. It is also concluded that the changes in chemical composition and texture characteristics for pyrochlore group minerals could serve as a proxy for syenite-related Nb–Ta mineralization processes.


Geosphere ◽  
2021 ◽  
Author(s):  
Juliana Mesa ◽  
Rebecca A. Lange

A detailed petrological study is presented to constrain the origin of a suite of alkali olivine basalt and hawaiite (&gt;5 wt% MgO) lavas that were erupted in a rift zone within the western Mexican arc (Trans-Mexican Volcanic Belt), adjacent to the Sangangüey andesitic stratovolcano, together with more evolved lavas (mugearites and benmoreites; &lt;5 wt% MgO). As previously documented in the literature, the Sangangüey mafic lavas are devoid of any arc geochemical signature, despite their location within an arc. In this study, a new olivine-melt thermometer/hygrometer, based on the partition­ing behavior of Ni2+ and Mg2+, was applied to the Sangangüey basalts (SB). The results show that the high-MgO (&gt;9 wt%) SB crystallized at higher temperatures and lower melt-water contents (0–1.3 wt%) compared to high-MgO arc basalts (≤5.7 wt% H2O) erupted in the west-central Mexican arc. The Sangangüey lavas with 5–8 wt% MgO display evidence of mixing between high-MgO alkali olivine basalts and low-MgO mugearites. It is proposed that the unique composition of the mugearites (i.e., low SiO2 contents and elevated FeO and TiO2 contents) is the result of partial melting of mafic lower crust driven by the influx of high-MgO intraplate basalts under relatively hot, dry, and reduced conditions. On the basis of crystal textures and compositional zoning patterns, it is shown that both phenocryst growth and magma mixing occurred rapidly, most likely during ascent along fractures, and not slowly during prolonged storage in a crustal magma chamber.


2021 ◽  
pp. jgs2020-125
Author(s):  
Ben Hayes ◽  
Jérémie Lehmann ◽  
Grant M. Bybee ◽  
Trishya M. Owen-Smith

Field, microstructural and mineral compositional evidence from the Mesoproterozoic K-feldspar megacrystic Red Granite at Oncócua Platform (southwestern Angola) is consistent with crystal transfer from magma to wallrock during syntectonic intrusion. K-feldspar megacrystic Red Granite intruded during folding of wallrock tonalite. Enclaves of the wallrock tonalite are elongated parallel to Red Granite intrusive contacts, a K-feldspar megacryst and hornblende defined magmatic foliation, and a gneissosity in the Red Granite. Stromatic layering present in the tonalite is crosscut by the Red Granite intrusive contacts or is isoclinally folded with fold axial planes and hinges filled with Red Granite. K-feldspar megacryst clusters and curved grain boundaries (i.e., contact melting), as well as thin Red Granite fold axial planar sheets containing K-feldspar megacrysts that are typically wider than the sheets themselves, are all consistent with melt loss and crystal accumulation during solidification. The wallrock tonalite also hosts K-feldspar megacrysts and hornblende phenocrysts that are interpreted to be the same population to those in Red Granite, on the basis of their size, shape, nature of inclusions, compositions, and compositional zoning. We propose that these crystals were transferred from the intrusive Red Granite magma to the wallrock tonalite via magmatic conduits that subsequently collapsed due to external stresses, leaving behind the larger crystals. The pristine preservation of intrusive relations at Oncócua Platform may mean that crystal transfer from magma to wallrock is more common in incrementally assembled granitoid plutons than previously thought.Supplementary material: [Mineral chemical data] available at https://doi.org/10.6084/m9.figshare.c.5448664


2021 ◽  
Vol 33 (2) ◽  
pp. 165-174
Author(s):  
Antonia Cepedal ◽  
Mercedes Fuertes-Fuente ◽  
Agustín Martin-Izard

Abstract. Silesiaite (Ca2Fe+3Sn(Si2O7)(Si2O6OH)), the Fe3+ analogue of kristiansenite (Ca2ScSn(Si2O7)(Si2O6OH)), has been found in the calcic Cu–Au skarn of El Valle-Boinás, in the north of Spain, which is the second occurrence of this mineral in the world. The study under optical microscopy shows crystals with a distinct pleochroism, from uncoloured to yellowish, high relief and imperfect cleavage under plain polarized light. Under polarized and analysed light, the mineral shows anomalous colours of interference and hourglass and sector optical zoning. Backscattered electron images reveal compositional zoning mimicking optical zoning with light grey (Sn-rich) and dark grey (Fe-rich) zones. The electron microprobe analyses showed that Fe-rich zones are also the richest in Al and Ti, whereas the Sn-rich zones are richest in Mn. The Fe+3 and Fe+2 proportions calculated by stoichiometry suggest a couple substitution such as 2(Fe,Al)+3⇔(Sn,Ti)+4+(Fe,Mn,Mg)+2. According to this, the formula of the silesiaite can be written as Ca2Fe1-2x+3Fex+2SnxSnSi2O7Si2O6OH, where x is between 0 and 0.4.


Author(s):  
Mark W. Richardson ◽  
Christopher R.M. McFarlane ◽  
David R. Lentz ◽  
Hendrik Falck

The Ptarmigan and Tom mesothermal gold deposits are located 10 km to the northeast of the city of Yellowknife, Northwest Territories in northern Canada. Both gold deposits comprise a series of en echelon veins that are hosted within upper greenschist to lower amphibolite facies ~2630 Ma (peak) rocks. Supracrustal units across the craton are intruded by the ca. 2610–2605-Ma granodiorite, tonalite, monzodiorite, quartz diorite, and affiliated rocks of the Concession Suite. Hydrothermal apatite is a common accessory mineral in both mineralized and non-mineralized quartz veins in the metasedimentary host rocks that constitute the Ptarmigan and Tom deposits. This study characterizes and compares turbidite-hosted hydrothermal apatite from the Ptarmigan and Tom deposits, non-mineralized veins adjacent to the ore body, and magmatic apatite from proximal LCT-pegmatites. Using electron probe microanalyses (EPMA), laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), micro-XRF, and cathodoluminescence (CL), the major, minor, and trace element abundances have been quantified and mapped. In addition to utilizing this data to determine if the chemistry of apatite can be used to constrain the source of hydrothermal fluids, the apparent age of the apatite is also evaluated utilizing in situ U-Pb dating. The distribution and abundance of major, minor, and trace elements from in situ recovered apatite were studied to characterize the nature of mineralizing fluids. Most apatite from mineralized and non-mineralized veins show different Mn, Sr, and Pb contents, as well as chondrite-normalized rare-earth element (REE) and Y abundance patterns. REEs display five unique chondrite-normalized patterns: (1) negative sloped pattern with slight negative Eu anomaly, (2) a flat pattern with a positive Eu anomaly, (3) a positive slope with a negative Eu anomaly, (iv) light rare earth element (LREE) depleted pattern with positive Eu anomaly, and (v) bell-shaped pattern with a negative Eu anomaly. The REE patterns reflect both the source of the auriferous hydrothermal fluids and, perhaps, co-precipitating mineral phases. Apatite from the Ptarmigan vein occurs with both: (1) a flat pattern with a positive Eu anomaly and (2) bell-shaped pattern with a negative Eu anomaly. The bell-shaped and flat patterns typify orogenic gold deposits. Vein-hosted apatite commonly displays compositional zoning with a characteristic yellow cathodoluminescence (CL) emission spectra with darker cores and brighter rims. The cores have lower REE, whereas the rims are notably higher in REE. It is thought that the darker cores in CL images reflect a transition from an early low REE hydrothermal fluid to one enriched in REE. The hydrothermal apatite age of 2585 ± 15 Ma is consistent with the intrusions of the 2605 and 2590 Ma two-mica granites of the Prosperous Suite and associated LCT pegmatites.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 979
Author(s):  
Jun-Hao Hu ◽  
Jing-Wen Liu ◽  
Tao Song ◽  
Bai-Shun Shi

The end-Permian Emeishan Large Igneous Province (ELIP) in SW China is widely accepted to have formed by mantle plume activities, forming voluminous flood basalts and rare picrites. Although many studies were performed on the petrogenesis and tectonic setting, the detailed conditions and processes within the magma chamber(s) remain unsolved. In this study, we studied the sector-/oscillatory-zoned clinopyroxene (Cpx) phenocrysts and performed Cpx-liquid thermobarometric calculation to constrain the physicochemical processes within the magma chambers. The results show that Cpx phenocrysts from the high-Mg basalts were crystallized at 4–27 (average 17) km, whilst those from the low-Mg basalt were crystallized at 0–23 (average 9) km depth. The sector and oscillatory Cpx zoning in the high-Mg basalts show that the magma had experienced undercooling and multistage recharge events in the deep-staging chamber(s). The magma replenishments may have eventually led to the eruption of high-Mg basalts, and magma ascent to the upper crust for further fractionation to form the low-Mg basalts and mafic intrusions.


Author(s):  
V R Troll ◽  
T Mattsson ◽  
B G J Upton ◽  
C H Emeleus ◽  
C H Donaldson ◽  
...  

Abstract The Palaeogene layered ultrabasic intrusion of the Isle of Rum forms the hearth of the Rum Igneous Centre in NW-Scotland. The regional Long Loch Fault, which is widely held to represent the feeder system to the layered magma reservoir, dissects the intrusion and is marked by extensive ultrabasic breccias of various types. Here we explore the connection between the layered ultrabasic cumulate rocks and breccias of central Rum that characterize the fault zone (the ‘Central Series’) and evaluate their relationship with the Long Loch Fault system. We show that fault splays in the Central Series define a transtensional graben above the Long Loch Fault into which portions of the layered units subsided and collapsed to form the extensive breccias of central Rum. The destabilization of the cumulate pile was aided by intrusion of Ca-rich ultrabasic magmas along the faults, fractures and existing bedding planes, creating a widespread network of veins and dykelets that provided a further means of disintegration and block detachment. Enrichment in LREE and compositional zoning in intra cumulate interstices suggest that the collapsed cumulates were infiltrated by relatively evolved plagioclase-rich melt, which led to extensive re-crystallization of interstices. Clinopyroxene compositions in Ca-rich gabbro and feldspathic peridotite veins suggest that the intruding magma was also relatively water-rich, and that pyroxene crystallized dominantly below the current level of exposure. We propose that the Long Loch Fault opened and closed repeatedly to furnish the Rum volcano with a pulsing magma conduit. When the conduit was shut, pressure built up in the underlying plumbing system, but was released during renewed fault movements to permit dense and often crystal-rich ultrabasic magmas to ascend rapidly from depth. These spread laterally on arrival in the shallow Rum magma reservoir, supplying repetitive recharges of crystal-rich magma to assemble the rhythmic layering of the Rum layered intrusion.


Sign in / Sign up

Export Citation Format

Share Document