Numerical Study of the Effects of a Counterflow Jet on the Drag Reduction of a Blunt Body in a Hypersonic Flow

2018 ◽  
Vol 19 (4) ◽  
pp. 828-835 ◽  
Author(s):  
Hee Yoon ◽  
Hyoung Jin Lee ◽  
Bok Jik Lee ◽  
In-Seuck Jeung
2006 ◽  
Vol 18 (11) ◽  
pp. 118104 ◽  
Author(s):  
Balla Venukumar ◽  
G. Jagadeesh ◽  
K. P. J. Reddy

2014 ◽  
Vol 1046 ◽  
pp. 177-181
Author(s):  
Yong Hong Li ◽  
Xin Wu Tang ◽  
Wei Qun Zhou

Taking into account the issue of configuration or aerodynamic heating, most supersonic and hypersonic flight vehicles have to use the blunt-nosed body. However, in supersonic especially in hypersonic flow the strong bow shock ahead of the blunt nose introduces a rather high shock drag that affects the aerodynamic performance of the vehicles seriously. A spike mounted on a blunt body during its flight pushes the strong bow shock away from the body surface and forms recirculation flow with low pressure ahead of the body surface, and then decreases the drag. The drag reduction effects of spikes in high supersonic and hypersonic flow had been validated through experimental and numerical methods. In order to analyze the influence of the spike on aerodynamic characteristics at low supersonic (M=1.5) flow past blunt-nosed bodies, numerical studies were carried out which included the influence of the spike shape, the analysis of the fluid flow structures and the effect on the aerodynamic characteristics of a blunt body.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 460-467 ◽  
Author(s):  
David Riggins ◽  
H. F. Nelson ◽  
Eric Johnson

2021 ◽  
Vol 33 (4) ◽  
pp. 045102
Author(s):  
C. García-Baena ◽  
J. I. Jiménez-González ◽  
C. Martínez-Bazán

Author(s):  
Dathi SNV Rajasekhar Rao ◽  
Bibin John

In this study, unsteady wave drag reduction in hypersonic flowfield using pulsed energy addition is numerically investigated. A single energy pulse is considered to analyze the time-averaged drag reduction/pulse. The blast wave creation, translation and its interaction with shock layer are studied. As the wave drag depends only on the inviscid aspects of the flowfield, Euler part of a well-established compressible flow Navier-Stokes solver USHAS (Unstructured Solver for Hypersonic Aerothermodynamics) is employed for the present study. To explore the feasibility of pulsed energy addition in reducing the wave drag at different flight conditions, flight Mach numbers of 5.75, 6.9 and 8.0 are chosen for the study. An [Formula: see text] apex angle blunt cone model is considered to be placed in such hypersonic streams, and steady-state drag and unsteady drag reductions are computed. The simulation results indicate that drag of the blunt-body can be reduced below the steady-state drag for a significant period of energy bubble-shock layer interaction, and the corresponding propulsive energy savings can be up to 9%. For energy pulse of magnitude 100mJ deposited to a spherical region of 2 mm radius, located 50 mm upstream of the blunt-body offered a maximum percentage of wave drag reduction in the case of Mach 8.0 flowfield. Two different flow features are found to be responsible for the drag reduction, one is the low-density core of the blast wave and the second one is the baroclinic vortex created due to the plasma energy bubble-shock layer interaction. For the same freestream stagnation conditions, these two flow features are noted to be very predominant in the case of high Mach number flow in comparison to Mach 5.75 and 6.9 cases. However, the ratio of energy saved to the energy consumed is noted as a maximum for the lower Mach number case.


Sign in / Sign up

Export Citation Format

Share Document