scholarly journals Cooling down the world oceans and the earth by enhancing the North Atlantic Ocean current

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Julian David Hunt ◽  
Andreas Nascimento ◽  
Fabio A. Diuana ◽  
Natália de Assis Brasil Weber ◽  
Gabriel Malta Castro ◽  
...  

AbstractThe world is going through intensive changes due to global warming. It is well known that the reduction in ice cover in the Arctic Ocean further contributes to increasing the atmospheric Arctic temperature due to the reduction of the albedo effect and increase in heat absorbed by the ocean’s surface. The Arctic ice cover also works like an insulation sheet, keeping the heat in the ocean from dissipating into the cold Arctic atmosphere. Increasing the salinity of the Arctic Ocean surface would allow the warmer and less salty North Atlantic Ocean current to flow on the surface of the Arctic Ocean considerably increasing the temperature of the Arctic atmosphere and release the ocean heat trapped under the ice. This paper argues that if the North Atlantic Ocean current could maintain the Arctic Ocean ice-free during the winter, the longwave radiation heat loss into space would be larger than the increase in heat absorption due to the albedo effect. This paper presents details of the fundamentals of the Arctic Ocean circulation and presents three possible approaches for increasing the salinity of the surface water of the Arctic Ocean. It then discusses that increasing the salinity of the Arctic Ocean would warm the atmosphere of the Arctic region, but cool down the oceans and possibly the Earth. However, it might take thousands of years for the effects of cooling the oceans to cool the global average atmospheric temperature.

2013 ◽  
Vol 79 ◽  
pp. 111-121 ◽  
Author(s):  
Anne de Vernal ◽  
Claude Hillaire-Marcel ◽  
André Rochon ◽  
Bianca Fréchette ◽  
Maryse Henry ◽  
...  

2021 ◽  
Author(s):  
Hiroshi Sumata ◽  
Laura de Steur ◽  
Sebastian Gerland ◽  
Dmitry Divine ◽  
Olga Pavlova

Abstract Fram Strait is the major gateway connecting the Arctic Ocean and North Atlantic Ocean, where nearly 90% of the sea ice export from the Arctic Ocean takes place. The exported sea ice is a large source of freshwater to the Nordic Seas and Subpolar North Atlantic, thereby preconditioning European climate and deep water formation in the downstream North Atlantic Ocean. Here we show that in 2018, the ice export through Fram Strait showed an unprecedented decline since the early 1990s. The 2018 ice export was reduced to less than 40% relative to that between 2000 and 2017, and amounted to just 25% of the 1990s. The minimum export was attributed to regional sea ice-ocean processes driven by an anomalous atmospheric circulation over the Atlantic sector of the Arctic. The anomalous circulation caused a stagnation of southward sea ice drift, causing a sudden drop of sea ice thickness north of the Fram Strait due to local heat supply from the ocean. The result indicates that a drastic change of the freshwater cycle and its environmental consequences happen not only through ongoing Arctic-wide ice thinning, but also by regional scale atmospheric anomalies in the Atlantic sector on annual timescales.


2009 ◽  
Vol 6 (1) ◽  
pp. 971-994 ◽  
Author(s):  
E. H. Shadwick ◽  
T. Papakyriakou ◽  
A. E. F. Prowe ◽  
D. Leong ◽  
S. A. Moore ◽  
...  

Abstract. The Arctic Ocean is expected to be disproportionately sensitive to climatic changes, and is thought to be an area where such changes might be detected. The Arctic hydrological cycle is influenced by: runoff and precipitation, sea ice formation/melting, and the inflow of saline waters from Bering and Fram Straits and the Barents Sea Shelf. Pacific water is recognizable as intermediate salinity water, with high concentrations of dissolved inorganic carbon (DIC), flowing from the Arctic Ocean to the North Atlantic via the Canadian Arctic Archipelago. We present DIC data from an east-west section through the Archipelago, as part of the Canadian International Polar Year initiatives. The fractions of Pacific and Arctic Ocean waters leaving the Archipelago and entering Baffin Bay, and subsequently the North Atlantic, are computed. The eastward transport of carbon from the Pacific, via the Arctic, to the North Atlantic is estimated. Altered mixing ratios of Pacific and freshwater in the Arctic Ocean have been recorded in recent decades. Any climatically driven alterations in the composition of waters leaving the Arctic Archipelago may have implications for anthropogenic CO2 uptake, and hence ocean acidification, in the subpolar and temperate North Atlantic.


2020 ◽  
Author(s):  
Randelle M. Bundy ◽  
Alessandro Tagliabue ◽  
Nicholas J. Hawco ◽  
Peter L. Morton ◽  
Benjamin S. Twining ◽  
...  

Abstract. Cobalt (Co) is an important bioactive trace metal that can limit or co-limit phytoplankton growth in many regions of the ocean. Total dissolved and labile Co measurements in the Canadian sector of the Arctic Ocean during U.S. GEOTRACES Arctic expedition (GN01) and the Canadian International Polar Year-GEOTRACES expedition (GIPY14) revealed a dynamic biogeochemical cycle for Co in this basin. The major sources of Co in the Arctic were from shelf regions and rivers, with only minimal contributions from other freshwater sources (sea ice, snow) and aeolian deposition. The most striking feature was the extremely high concentrations of dissolved Co in the upper 100 m, with concentrations routinely exceeding 800 pmol L−1 over the shelf regions. This plume of high Co persisted throughout the Arctic basin and extended to the North Pole, where sources of Co shifted from primarily shelf-derived to riverine, as freshwater from Arctic rivers was entrained in the Transpolar Drift. Dissolved Co was also strongly organically-complexed in the Arctic, ranging from 70–100 % complexed in the surface and deep ocean, respectively. Deep water concentrations of dissolved Co were remarkably consistent throughout the basin (~ 55 pmol L−1), with concentrations reflecting those of deep Atlantic water and deep ocean scavenging of dissolved Co. A biogeochemical model of Co cycling was used to support the hypothesis that the majority of the high surface Co in the Arctic was emanating from the shelf. The model showed that the high concentrations of Co observed along the transect were due to the large shelf area of the Arctic, as well as dampened scavenging of Co by manganese (Mn)-oxidizing bacteria due to the lower temperatures. The majority of this scavenging appears to have occurred in the upper 200 m, with minimal additional scavenging below this depth. Preliminary evidence suggests that both dissolved and labile Co are increasing over time on the Arctic shelf, and the elevated surface concentrations of Co likely leads to a net flux of Co out of the Arctic, with implications for downstream biological uptake of Co in the North Atlantic and elevated Co in North Atlantic Deep Water. Understanding the current distributions of Co in the Arctic will be important for constraining changes to Co inputs resulting from regional intensification of freshwater fluxes from ice and permafrost melt in response to ongoing climate change.


2021 ◽  
Author(s):  
Yarisbel Garcia Quintana ◽  
Paul G. Myers ◽  
Kent Moore

<p>Nares Strait, between Greenland and Ellesmere Island, is one of the main pathways connecting the Arctic Ocean to the North Atlantic. The multi-year sea ice that is transported through the strait plays an important role in the mass balance of Arctic sea-ice as well as influencing the climate of the North Atlantic region. This transport is modulated by the formation of ice arches that form at the southern and northern of the strait.  The arches also play an important role in the maintenance of the North Water Polynya (NOW) that forms at the southern end of the strait. The NOW is one of the largest and most productive of Arctic polynyas. Given its significance, we use an eddy-permitting regional configuration of the Nucleus for European Modelling of the Ocean (NEMO) to explore sea-ice variability along Nares Strait, from 2002 to 2019. The model is coupled with the Louvain-la-Neuve (LIM2) sea ice thermodynamic and dynamic numerical model and is forced by the Canadian Meteorological Centre’s Global Deterministic Prediction System Reforecasts.</p><p>We use the model to explore the variability in ocean and sea ice characteristics along Nares Strait. The positive and negative degree days, measures of ice decay and growth, along the strait are consistent with the warming that the region is experiencing. Sea-ice production/decay did not show any significant change other than an enhanced decay during the summers of 2017-1019. Sea-ice thickness on the other hand has decreased significantly since 2007. This decrease has been more pronounced along the northern (north of Kane Basin) portion of the strait. What is more, ocean model data indicates that since 2007 the northern Nares Strait upper 100m layer has become fresher, indicating an increase in the freshwater export out of the Arctic Ocean and through the strait. The southern portion of the strait, on the other hand, has become warmer and saltier, which would be consistent with an influx of Irminger Water as proposed by previous modelling results. These changes could impact the formation and stability of the ice arch and hence the cessation of ice transport down Nares Strait as well as contributing to changes in the characteristics of the NOW. </p>


Sign in / Sign up

Export Citation Format

Share Document