scholarly journals Transient light emission from the silicothermic reduction of magnesium oxide with potential for monitoring intermediate compound formation and decay

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Tim Gebensleben ◽  
Verena Becker ◽  
Jörg August Becker
1993 ◽  
Vol 57 (389) ◽  
pp. 613-633 ◽  
Author(s):  
Bronwen M. Coghill ◽  
Allan H. Wilson

AbstractThis paper presents the results of microprobe investigations of the Platinum-Group Elements (PGE) of the Selukwe Subchamber, Great Dyke, Zimbabwe. The PGE are associated with base metal sulphides in the uppermost pyroxenites of the Ultramafic Sequence of the Great Dyke. The following minerals have been indentified: bismuthotellurides (moncheite, maslovite, michenerite, kotulskite and polarite); arsenides (sperrylite); and sulphides and sulpharsenides (cooperite, laurite, braggite and hollingworthite). Platinum Group Minerals (PGM) occur in three distinct textural environments: (1) at the boundary of sulphides and silicates/hydrosilicates, (2) entirely enclosed within sulphides, and (3) entirely enclosed within silicate or hydrosilicate minerals. The stratigraphic distribution, environments and textures of the PGM have important genetic implications, and cannot be explained by a single process. A multi-process model for the petrogenesis of the PGE mineralisation in terms of complexation and intermediate compound formation is proposed. The primary mineralising events were due to orthomagmatic processes, but the observed textures are the result of microscale remobilisation of PGM components by trapped interstitial fluids (bydromagmatic processes).


1962 ◽  
Vol 15 (3) ◽  
pp. 429 ◽  
Author(s):  
RL Bieleski

Radioisotope techniques were used to study kinetics of sucrose, glucose, and fructose accumulation in slices of immature sugar�cane tissue. For all three sugars, accumulation rate was P. hyperbolic function of sugar concentration, suggesting intermediate compound formation between the sugars and some receptor or "carrier" in the cell. Sucrose and glucose interacted competitively, implying that, these two sugars (and probably also fructose, fructose 6-phosphate, and glucose I-phosphate) shared the same carrier.


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


Author(s):  
T. C. Tisone ◽  
S. Lau

In a study of the properties of a Ta-Au metallization system for thin film technology application, the interdiffusion between Ta(bcc)-Au, βTa-Au and Ta2M-Au films was studied. Considered here is a discussion of the use of the transmission electron microscope(TEM) in the identification of phases formed and characterization of the film microstructures before and after annealing.The films were deposited by sputtering onto silicon wafers with 5000 Å of thermally grown oxide. The film thicknesses were 2000 Å of Ta and 2000 Å of Au. Samples for TEM observation were prepared by ultrasonically cutting 3mm disks from the wafers. The disks were first chemically etched from the silicon side using a HNO3 :HF(19:5) solution followed by ion milling to perforation of the Au side.


Author(s):  
P. L. Burnett ◽  
W. R. Mitchell ◽  
C. L. Houck

Natural Brucite (Mg(OH)2) decomposes on heating to form magnesium oxide (MgO) having its cubic ﹛110﹜ and ﹛111﹜ planes respectively parallel to the prism and basal planes of the hexagonal brucite lattice. Although the crystal-lographic relation between the parent brucite crystal and the resulting mag-nesium oxide crystallites is well known, the exact mechanism by which the reaction proceeds is still a matter of controversy. Goodman described the decomposition as an initial shrinkage in the brucite basal plane allowing magnesium ions to shift their original sites to the required magnesium oxide positions followed by a collapse of the planes along the original <0001> direction of the brucite crystal. He noted that the (110) diffraction spots of brucite immediately shifted to the positions required for the (220) reflections of magnesium oxide. Gordon observed separate diffraction spots for the (110) brucite and (220) magnesium oxide planes. The positions of the (110) and (100) brucite never changed but only diminished in intensity while the (220) planes of magnesium shifted from a value larger than the listed ASTM d spacing to the predicted value as the decomposition progressed.


Author(s):  
C. Jacobsen ◽  
J. Fu ◽  
S. Mayer ◽  
Y. Wang ◽  
S. Williams

In scanning luminescence x-ray microscopy (SLXM), a high resolution x-ray probe is used to excite visible light emission (see Figs. 1 and 2). The technique has been developed with a goal of localizing dye-tagged biochemically active sites and structures at 50 nm resolution in thick, hydrated biological specimens. Following our initial efforts, Moronne et al. have begun to develop probes based on biotinylated terbium; we report here our progress towards using microspheres for tagging.Our initial experiments with microspheres were based on commercially-available carboxyl latex spheres which emitted ~ 5 visible light photons per x-ray absorbed, and which showed good resistance to bleaching under x-ray irradiation. Other work (such as that by Guo et al.) has shown that such spheres can be used for a variety of specific labelling applications. Our first efforts have been aimed at labelling ƒ actin in Chinese hamster ovarian (CHO) cells. By using a detergent/fixative protocol to load spheres into cells with permeabilized membranes and preserved morphology, we have succeeded in using commercial dye-loaded, spreptavidin-coated 0.03μm polystyrene spheres linked to biotin phalloidon to label f actin (see Fig. 3).


Sign in / Sign up

Export Citation Format

Share Document