Reducing instabilities of mesh stiffness variation in two-stage gear using phasing method

JMST Advances ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 89-101
Author(s):  
S. H. Gawande ◽  
V. V. Palande
Author(s):  
Jian Lin ◽  
Robert G. Parker

Abstract Mesh stiffness variation, the change in stiffness of meshing teeth as the number of teeth in contact changes, causes parametric instabilities and severe vibration in gear systems. The operating conditions leading to parametric instability are investigated for two-stage gear chains, including idler gear and countershaft configurations. Interactions between the stiffness variations at the two meshes are examined. Primary, secondary, and combination instabilities are studied. The effects of mesh stiffness parameters, including stiffness variation amplitudes, mesh frequencies, contact ratios, and mesh phasing, on these instabilities are analytically identified. For mesh stiffness variation with rectangular waveforms, simple design formulae are derived to control the instability regions by adjusting the contact ratios and mesh phasing. The analytical results are compared to numerical solutions.


2001 ◽  
Vol 124 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Jian Lin ◽  
Robert G. Parker

Mesh stiffness variation, the change in stiffness of meshing teeth as the number of teeth in contact changes, causes parametric instabilities and severe vibration in gear systems. The operating conditions leading to parametric instability are investigated for two-stage gear chains, including idler gear and countershaft configurations. Interactions between the stiffness variations at the two meshes are examined. Primary, secondary, and combination instabilities are studied. The effects of mesh stiffness parameters, including stiffness variation amplitudes, mesh frequencies, contact ratios, and mesh phasing, on these instabilities are analytically identified. For mesh stiffness variation with rectangular waveforms, simple design formulas are derived to control the instability regions by adjusting the contact ratios and mesh phasing. The analytical results are compared to numerical solutions.


2008 ◽  
Vol 74 (745) ◽  
pp. 2137-2144 ◽  
Author(s):  
Yutaka YOSHITAKE ◽  
Takashi HAMANO ◽  
Hironori TAMURA ◽  
Akira HARADA ◽  
Atushi KOBAYASHI

Author(s):  
K-Z Zhang ◽  
H-D Yu ◽  
X-X Zeng ◽  
X-M Lai

Multiple pinion drives, parallel arrangements of the pinions for large torque transmission, are widely utilized in various heavy-duty industrial applications. For such multi-mesh gear systems, periodic mesh stiffnesses could possibly cause parametric instabilities and server vibrations. Based on the Floquet–Lyapunov theory, numerical simulations are conducted to determine the parametric instability status. For rectangular waveforms assumption of the mesh stiffness variations, the primary, secondary, and combination instabilities of the multiple pinion drives are studied. The effects of mesh stiffness parameters, including mesh frequencies, stiffness variation amplitudes, and mesh phasing, on these instabilities are yielded. Unstable regions are also indicated for different gear pair configurations. Instability conditions of three-pinion drives are obtained and compared with those of the three-stage gear train.


2007 ◽  
Vol 2007 (0) ◽  
pp. _606-1_-_606-6_
Author(s):  
Yutaka YOSHITAKE ◽  
Takashi HAMANO ◽  
Hironori TAMURA ◽  
Akira HARADA ◽  
Atsushi KOBAYASHI

2021 ◽  
Vol 347 ◽  
pp. 00030
Author(s):  
Nicholas J. Tutt ◽  
Martin P. Venter ◽  
Daniel N.J. Els

This paper presents the development and validation of a six degree of freedom (DOF) dynamic model of a two-stage parallel shaft gearbox, without flaws, which is able to determine the reaction of gearbox components to varying torque inputs and loads. The model utilises flexible shafts and gears rather than using a rigid assumption, to further understand the effect of varying mesh stiffness. The paper replicates the results presented by Diehl and Tang, and improves the number of frequencies that can be analysed. The gear meshing frequencies were expected to dominate the result, however due to the use of a sinusoidal approximation of the varying tooth mesh frequency, the presented model shows the additional gear generated frequencies are present and analysable in the data.


2019 ◽  
Vol 33 (3) ◽  
pp. 1019-1032 ◽  
Author(s):  
Xiuzhi He ◽  
Xiaoqin Zhou ◽  
Zhen Xue ◽  
Yixuan Hou ◽  
Qiang Liu ◽  
...  

Author(s):  
J Hedlund ◽  
A Lehtovaara

One of the most common challenges in gear drive design is to determine the best combination of gear geometry parameters. These parameters should be capable of being varied effectively and related to gear mesh stiffness variation in advanced excitation and vibration analysis. Accurate prediction of gear mesh stiffness and transmission error requires an efficient numerical method. The parameterized numerical model was developed for the evaluation of excitation induced by mesh stiffness variation for helical gear design purposes. The model uses linear finite-element (FE) method to calculate tooth deflections, including tooth foundation flexibility. The model combines Hertzian contact analysis with structural analysis to avoid large FE meshes. Thus, mesh stiffness variation was obtained in the time and frequency domains, which gives flexibility if comparison is made with measured spectrums. Calculations showed that a fairly low number of elements suffice for the estimation of mesh stiffness variation. A reasonable compromise was achieved between design trends and calculation time.


Sign in / Sign up

Export Citation Format

Share Document