Exploring trophic role similarity and phylogenetic relatedness between species in food webs

2021 ◽  
Author(s):  
Shu-mei Lai ◽  
Wei-chung Liu ◽  
Hsuan-wien Chen
2003 ◽  
Vol 220 (3) ◽  
pp. 303-321 ◽  
Author(s):  
JOSEPH J. LUCZKOVICH ◽  
STEPHEN P. BORGATTI ◽  
JEFFREY C. JOHNSON ◽  
MARTIN G. EVERETT

2016 ◽  
Vol 283 (1826) ◽  
pp. 20152326 ◽  
Author(s):  
Els M. van der Zee ◽  
Christine Angelini ◽  
Laura L. Govers ◽  
Marjolijn J. A. Christianen ◽  
Andrew H. Altieri ◽  
...  

The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity.


2019 ◽  
Vol 286 (1906) ◽  
pp. 20190846 ◽  
Author(s):  
Christie E. Yorke ◽  
Henry M. Page ◽  
Robert J. Miller

Detritus can fundamentally shape and sustain food webs, and shredders can facilitate its availability. Most of the biomass of the highly productive giant kelp, Macrocystis pyrifera , becomes detritus that is exported or falls to the seafloor as litter. We hypothesized that sea urchins process kelp litter through shredding, sloppy feeding and egestion, making kelp litter more available to benthic consumers. To test this, we conducted a mesocosm experiment in which an array of kelp forest benthic consumers were exposed to 13 C- and 15 N-labelled Macrocystis with or without the presence of sea urchins, Strongylocentrotus purpuratus . Our results showed that several detritivore species consumed significant amounts of kelp, but only when urchins were present. Although they are typically portrayed as antagonistic grazers in kelp forests, sea urchins can have a positive trophic role, capturing kelp litter before it is exported and making it available to a suite of benthic detritivores.


2012 ◽  
Author(s):  
Christopher B. Sturdy ◽  
Marc T. Avey ◽  
Laurie L. Bloomfield ◽  
Julie E. Elie ◽  
Todd M. Freeberg ◽  
...  

2018 ◽  
Vol 30 (2) ◽  
pp. 19-28
Author(s):  
A. J. Oludare ◽  
J. I. Kioko ◽  
A. A. Akeem ◽  
A. T. Olumide ◽  
K. R. Justina ◽  
...  

Nine accessions of Bambara groundnut (Vigna subterranea (L.) Verdc.,syn. Voandzeia subterranea (L.) Thouars ex DC.)  obtained from National Centre for Genetic Resources and Biotechnology (NACGRAB), Ibadan, Oyo state, were assessed for their genetic and phylogenetic relatedness through electrophoretic analysis of the seed proteins. 0.2g of the seeds were weighed and macerated with mortar and pestle in 0.2M phosphate buffer containing 0.133M of acid (NaH2PO4) and 0.067 of base (Na2HPO4) at pH 6.5. Protein characterization with standard marker revealed that the seeds of the nine accessions contained proteins (B.S.A, Oval Albumin, Pepsinogen, Trypsinogen and Lysozyme) with molecular weights ranging from 66kda and above, 45 – 65 kDa, 44 – 33 kda, 32-24 kDa and 23-14 kDa, respectively. The student T-test revealed that accessions B, C, E, F, H and I have molecular weights not significantly different from one another (P<0.05) while samples A, D and G showed significantly different values (P>0.05). All the accessions had at least two proteins and two major bands in common. The study revealed intra-specific similarities and genetic diversity in protein contents among the nine accessions of Bambara groundnut (Vigna subterraranea (L.) Verdc.syn


2019 ◽  
Vol 613 ◽  
pp. 49-66 ◽  
Author(s):  
VN de Jonge ◽  
U Schückel ◽  
D Baird
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document