benthic consumers
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 2)

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1536 ◽  
Author(s):  
Jinlei Yu ◽  
Hu He ◽  
Zhengwen Liu ◽  
Erik Jeppesen ◽  
Feizhou Chen ◽  
...  

Eutrophication of lakes often results in dominance of cyanobacteria, which may potentially lead to serious blooms and toxic water. However, cyanobacterial detritus may act as an important carbon source for aquatic organisms. Using stable isotope carbon (13C) as a tracer, we assessed the carbon transfer from cyanobacteria to pelagic and benthic consumers in a 28-day outdoor mesocosm (~130 L) labelling experiment established in Lake Taihu, China, during a Microcystis aeruginosa bloom. The different organisms were labelled differently after addition of the labelled Microcystis detritus to the water. δ13C of particulate organic matter and of cladoceran zooplankton peaked earlier than for larger invertebrate consumers. Among the pelagic species, Daphnia similis had the highest Δδ13C, while the two snail species Radix swinhoei and Bellamya aeruginosa had lower but similar Δδ13C. The bivalves showed relatively modest changes in δ13C. The δ13C of Anodonta woodiana and Unio douglasiae showed a marginal though not significant increase, while a marked increase occurred for Arconaia lanceolate peaking on day 20, and Corbicula fluminea a slight increase peaking on day 9. Our results suggest that carbon from cyanobacteria can be incorporated by pelagic and some benthic consumers and eventually be transferred to higher trophic levels. Cyanobacterial carbon may, therefore, be considered an important carbon source supporting the entire food web during blooms, even if the cyanobacteria are not consumed directly.


2019 ◽  
Vol 286 (1906) ◽  
pp. 20190846 ◽  
Author(s):  
Christie E. Yorke ◽  
Henry M. Page ◽  
Robert J. Miller

Detritus can fundamentally shape and sustain food webs, and shredders can facilitate its availability. Most of the biomass of the highly productive giant kelp, Macrocystis pyrifera , becomes detritus that is exported or falls to the seafloor as litter. We hypothesized that sea urchins process kelp litter through shredding, sloppy feeding and egestion, making kelp litter more available to benthic consumers. To test this, we conducted a mesocosm experiment in which an array of kelp forest benthic consumers were exposed to 13 C- and 15 N-labelled Macrocystis with or without the presence of sea urchins, Strongylocentrotus purpuratus . Our results showed that several detritivore species consumed significant amounts of kelp, but only when urchins were present. Although they are typically portrayed as antagonistic grazers in kelp forests, sea urchins can have a positive trophic role, capturing kelp litter before it is exported and making it available to a suite of benthic detritivores.


2019 ◽  
Vol 64 (5) ◽  
pp. 2140-2151
Author(s):  
Maria Włodarska‐Kowalczuk ◽  
Magnus Aune ◽  
Loïc N. Michel ◽  
Agata Zaborska ◽  
Joanna Legeżyńska

2018 ◽  
Vol 187 ◽  
pp. 168-176 ◽  
Author(s):  
Simon Belle ◽  
Rene Freiberg ◽  
Anneli Poska ◽  
Helen Agasild ◽  
Tiiu Alliksaar ◽  
...  

2017 ◽  
Vol 145 (1-2) ◽  
pp. 205-219 ◽  
Author(s):  
Belle Simon ◽  
Poska Anneli ◽  
Hossann Christian ◽  
Tõnno Ilmar

2016 ◽  
Vol 163 (6) ◽  
Author(s):  
S. Como ◽  
A. Pais ◽  
P. Rumolo ◽  
S. Saba ◽  
M. Sprovieri ◽  
...  

2013 ◽  
Vol 10 (1) ◽  
pp. 1051-1081
Author(s):  
N. N. Chang ◽  
J. C. Shiao ◽  
G. C. Gong ◽  
S. J. Kao ◽  
C. H. Hsieh

Abstract. Coastal areas adjoining rivers are nourished by both the riverborne nutrients and organic matters. Annually, the East China Sea (ECS) receives large quantities of particulate organic carbon transported from the Changjiang (Yangtze River), as well as nutrients, which have brought about high primary production in the ECS. This study evaluated the respective contributions of terrigenous organic matters (allochthonous food source) and nutrient-induced marine production (autochthonous food source) to the ECS benthic ecosystem by analyzing the stable isotope compositions for zooplankton, benthic crustacea and demersal fish. Zooplankton exhibited consistently higher δ13C values (−21.31‰ ~ −19.22‰) in the inner shelf than in the outer shelf. The δ13C signals of fish (−19.64‰ ~ −13.46‰) and crustacea (−18.87‰ ~ −15.00‰) showed strong reliance on the marine production across the ECS continental shelf, regardless of distance from the shore. Moreover, the benthic crustacea and fish exhibited significantly higher δ13C values in the highly productive inshore sites and the δ13C values decreased seawards, implying a higher intrusion of atmospheric CO2 and lower photosynthetic fractionation due to algal blooming in the inner shelf. The δ13C values of fish also showed significant positive correlations with the concentration of surface chlorophyll a and nitrogen. Riverborne nutrients closely linked marine benthic consumers to the terrestrial watershed and tightly coupled the pelagic and benthic ecosystems in the ECS. The stable isotope compositions of benthic consumers can act as an indicator for pelagic trophic status. The future research combining analyses of stable isotope and community structure may improve assessment on the balance between contribution and risk of phytoplankton blooms.


Sign in / Sign up

Export Citation Format

Share Document