scholarly journals Chromosome morphology and cytomolecular characteristics of the perennial rye cultivar ‘Kriszta’

Author(s):  
Kitti Szőke-Pázsi ◽  
Edina Türkösi ◽  
Éva Szakács

AbstractThe perennial Secale cereanum cultivar ‘Kriszta’ is an artificial hybrid of S. cereale and S. strictum ssp. anatolicum. From the cross between the wheat line Mv9kr1 and ‘Kriszta’, which aimed the transfer of beneficial traits from rye to wheat, numerous translocation lines have been produced. For the identification of the translocated chromosomes, the unambiguous differentiation between chromosome arms of ‘Kriszta’ is essential. The identification of its short chromosome arms using conventional FISH probes is easy, but because of their similar hybridization patterns, its long arms cannot be distinguished. The present study aimed to create the detailed karyotype of ‘Kriszta’, especially that of long arms, by both chromosome measurements and FISH using highly repetitive, as well as subtelomeric tandem repeat, and synthetic microsatellite DNA sequences. Our results indicate that the chromosome complement of ‘Kriszta’ is not a simple combination of the chromosomes of the parental rye species but is composed of rearranged chromosomes. It is also showed that an adequate pair-wise combination of the DNA sequences pSc119.2, pSc200, pSc250, and (AAC)5 makes it possible to identify any of the long arms of S. cereanum cv. Kriszta chromosomes. The future usability of the identified wheat- ‘Kriszta’ translocated chromosomes is also discussed.

2016 ◽  
Vol 18 (1) ◽  
pp. 27-32 ◽  
Author(s):  
V. Dzitsiuk ◽  
◽  
S. Kruhlyk ◽  
V. Spyrydonov ◽  
◽  
...  

1976 ◽  
Vol 54 (10) ◽  
pp. 1135-1139 ◽  
Author(s):  
W. Michael Dennis

Cytological studies were made on the following taxa: C. addisonii, C. filifera, C. glaucophylla, C. pitcheri, C. reticulata, C. texensis, C. versicolor, and C. viorna. All species were found to have a somatic chromosome number of 16 with a uniform karyotype consisting of five pairs of metacentric chromosomes with centromeres in the median region and three pairs of acrocentric chromosomes, two pairs with centromeres in the terminal region and one pair with centromeres in the subterminal region. These findings agree with reports of chromosome number and karyotype for other species of Clematis and suggest a marked stability of chromosome complement in the genus.


Genome ◽  
2001 ◽  
Vol 44 (4) ◽  
pp. 716-728 ◽  
Author(s):  
Pavel Neumann ◽  
Marcela Nouzová ◽  
Jirí Macas

A set of pea DNA sequences representing the most abundant genomic repeats was obtained by combining several approaches. Dispersed repeats were isolated by screening a short-insert genomic library using genomic DNA as a probe. Thirty-two clones ranging from 149 to 2961 bp in size and from 1000 to 39 000/1C in their copy number were sequenced and further characterized. Fourteen clones were identified as retrotransposon-like sequences, based on their homologies to known elements. Fluorescence in situ hybridization using clones of reverse transcriptase and integrase coding sequences as probes revealed that corresponding retroelements were scattered along all pea chromosomes. Two novel families of tandem repeats, named PisTR-A and PisTR-B, were isolated by screening a genomic DNA library with Cot-1 DNA and by employing genomic self-priming PCR, respectively. PisTR-A repeats are 211–212 bp long, their abundance is 2 × 104 copies/1C, and they are partially clustered in a secondary constriction of one chromosome pair with the rest of their copies dispersed on all chromosomes. PisTR-B sequences are of similar abundance (104 copies/1C) but differ from the "A" family in their monomer length (50 bp), high A/T content, and chromosomal localization in a limited number of discrete bands. These bands are located mainly in (sub)telomeric and pericentromeric regions, and their patterns, together with chromosome morphology, allow discrimination of all chromosome types within the pea karyotype. Whereas both tandem repeat families are mostly specific to the genus Pisum, many of the dispersed repeats were detected in other legume species, mainly those in the genus Vicia.Key words: repetitive DNA, plant genome, retroelements, satellite DNA, Pisum sativum.


Biologia ◽  
2011 ◽  
Vol 66 (3) ◽  
Author(s):  
Mariana Baraquet ◽  
Julián Valetti ◽  
Nancy Salas ◽  
Adolfo Martino

AbstractIn this study karyotypic features of the five species of the family Bufonidae from the central area of Argentina are described. The species are Rhinella achalensis, Rhinella arenarum, Rhinella fernandezae, Rhinella schneideri and Melanophryniscus stelzneri. The metaphases were obtained from intestinal and testis cells, using conventional techniques. Twenty metaphasic figures per individual were analyzed and the total length of each chromosome and the length of the four arms were measured. The obtained measurements were processed using Excel 2000 to obtain the average length of the arms p and q, the arm ratio, the centromeric index, the relative chromosome length and the relative arm length. All species showed karyotype 2n = 22, and karyotype formula of 6: 5. Pairs one to six were large, with a relative chromosome length between 18.64–7.59%; pairs seven to eleven were small, with a relative chromosome length between 7.18–2.42%. In all species the chromosome morphology was metacentric or submetacentric. Karyotype and ideograms were made for all species, based on morphometric parameters of the chromosome complement. Finally, discriminant analysis was used to separate the five species analyzed, with a highly significant classification rate of 80% and P < 0.0001. These results agree, in general, with those presented by other authors, however, in M. stelzneri detailed karyological studied have not been made so far, thus this work represents a significant contribution to the karyotypic decryption features of this species and the Rhinellla species from central area of Argentina.


Genome ◽  
1997 ◽  
Vol 40 (5) ◽  
pp. 589-593 ◽  
Author(s):  
C. Pedersen ◽  
P. Langridge

Using the Aegilops tauschii clone pAs1 together with the barley clone pHvG38 for two-colour fluorescence in situ hybridization (FISH) the entire chromosome complement of hexaploid wheat was identified. The combination of the two probes allowed easy discrimination of the three genomes of wheat. The banding pattern obtained with the pHvG38 probe containing the GAA-satellite sequence was identical to the N-banding pattern of wheat. A detailed idiogram was constructed, including 73 GAA bands and 48 pAs1 bands. Identification of the wheat chromosomes by FISH will be particularly useful in connection with the physical mapping of other DNA sequences to chromosomes, or for chromosome identification in general, as an alternative to C-banding.Key words: Triticum aestivum, chromosome identification, fluorescence in situ hybridization, repetitive DNA sequences.


Science ◽  
1994 ◽  
Vol 266 (5189) ◽  
pp. 1403-1405 ◽  
Author(s):  
R Fishel ◽  
A Ewel ◽  
S Lee ◽  
M. Lescoe ◽  
J Griffith

Genome ◽  
1999 ◽  
Vol 42 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Kangfu Yu ◽  
Soon J. Park ◽  
Vaino Poysa

1970 ◽  
Vol 12 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Lotti M. S. Sears ◽  
Suzanne Lee-Chen

The five primary trisomics and one telotrisomic of Arabidopsis have been established and identified with respect to known linkage groups. From diplotene preparations the chromosome complement was seen to comprise one long, three medium, and one short chromosome. All the trisomics except Fragilis were transmitted through the male (in frequencies up to 22%). There appears to be some selection against disomic eggs, only 21-30% recovery being observed from selfed trisomics. No tetrasomics were found.


Sign in / Sign up

Export Citation Format

Share Document