On vanishing and localizing around corners of electromagnetic transmission resonances

Author(s):  
Huaian Diao ◽  
Hongyu Liu ◽  
Xianchao Wang ◽  
Ke Yang
Author(s):  
Mohammad Alipour zadeh ◽  
Yaser Hajati ◽  
Imam Makhfudz

Abstract Existing resonant tunneling modes in the shape of line-type resonances can improve the transport properties of the junction. Motivated by the unique structural properties of monolayer WSe2 e.g. significant spin-orbit coupling (SOC) and large direct bandgap, the transport properties of a normal/ferromagnetic/normal (NFN) WSe2 junction with large incident angles in the presence of exchange field (h), off-resonance light (∆Ω) and gate voltage (U) is studied. In a certain interval of U, the transmission shows a gap with optically controllable width, while outside it, the spin and valley resolved transmissions have an oscillatory behavior with respect to U. By applying ∆Ω (h), an optically (electrically) switchable perfect spin and valley polarizations at all angles of incidence have been found. For large incident angles, the transmission resonances change to spin-valley-dependent separated ideal line-type resonant peaks with respect to U, resulting in switchable perfect spin and valley polarizations, simultaneously. Furthermore, even in the absence of U, applying h or ∆Ω at large incident angles can give some spin-valley dependent ideal transmission peaks, making h or ∆Ω a transmission valve capable of giving a switchable fully spinvalley filtering effect. These findings suggest some alternate methods for providing high-efficiency spin and valley filtering devices based on WSe2.


2013 ◽  
Vol 30 (11) ◽  
pp. 2356 ◽  
Author(s):  
Peng Zhang ◽  
Ming Zhao ◽  
Lin Wu ◽  
Yu Zheng ◽  
Jian Duan ◽  
...  

2006 ◽  
Vol 38 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Z. Jaksic ◽  
M. Maksimovic ◽  
D. Vasiljevic-Radovic ◽  
M. Sarajlic

Owing to their surface plasmon-based operation, arrays of subwavelength holes show extraordinary electromagnetic transmission and intense field localizations of several orders of magnitude. Thus they were proposed as the basic building blocks for a number of applications utilizing the enhancement of nonlinear optical effects. We designed and simulated nanometer-sized subwavelength holes using an analytical approach. In our experiments we used the scanning probe method for nanolithographic fabrication of subwavelength hole arrays in silver layers sputtered on a positive photoresist substrate. We fabricated ordered nanohole patterns with different shapes, dispositions and proportions. The smallest width was about 60 nm. We characterized the fabricated samples by atomic force microscopy.


Sign in / Sign up

Export Citation Format

Share Document