scholarly journals Blow up of solutions of semilinear wave equations related to nonlinear waves in de Sitter spacetime

Author(s):  
Kimitoshi Tsutaya ◽  
Yuta Wakasugi
2018 ◽  
Vol 148 (6) ◽  
pp. 1313-1330 ◽  
Author(s):  
Weiping Yan

We consider the finite-time blow-up of solutions for the following two kinds of nonlinear wave equation in de Sitter spacetime:This proof is based on a new blow-up criterion, which generalizes that by Sideris. Furthermore, we give the lifespan estimate of solutions for the problems.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Makram Hamouda ◽  
Mohamed Ali Hamza ◽  
Alessandro Palmieri

<p style='text-indent:20px;'>In this paper, we establish blow-up results for the semilinear wave equation in generalized Einstein-de Sitter spacetime with nonlinearity of derivative type. Our approach is based on the integral representation formula for the solution to the corresponding linear problem in the one-dimensional case, that we will determine through Yagdjian's Integral Transform approach. As upper bound for the exponent of the nonlinear term, we discover a Glassey-type exponent which depends both on the space dimension and on the Lorentzian metric in the generalized Einstein-de Sitter spacetime.</p>


2008 ◽  
Vol 05 (07) ◽  
pp. 1069-1083 ◽  
Author(s):  
DONATO BINI ◽  
SALVATORE CAPOZZIELLO ◽  
GIAMPIERO ESPOSITO

Gravitational waves are considered as metric perturbations about a curved background metric, rather than the flat Minkowski metric since several situations of physical interest can be discussed by this generalization. In this case, when the de Donder gauge is imposed, its preservation under infinitesimal spacetime diffeomorphisms is guaranteed if and only if the associated covector is ruled by a second-order hyperbolic operator which is the classical counterpart of the ghost operator in quantum gravity. In such a wave equation, the Ricci term has opposite sign with respect to the wave equation for Maxwell theory in the Lorenz gauge. We are, nevertheless, able to relate the solutions of the two problems, and the algorithm is applied to the case when the curved background geometry is the de Sitter spacetime. Such vector wave equations are studied in two different ways: (i) an integral representation, (ii) through a solution by factorization of the hyperbolic equation. The latter method is extended to the wave equation of metric perturbations in the de Sitter spacetime. This approach is a step towards a general discussion of gravitational waves in the de Sitter spacetime and might assume relevance in cosmology in order to study the stochastic background emerging from inflation.


2020 ◽  
Vol 195 ◽  
pp. 111735 ◽  
Author(s):  
Hengyan Li ◽  
Xintao Li ◽  
Weiping Yan

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sukruti Bansal ◽  
Silvia Nagy ◽  
Antonio Padilla ◽  
Ivonne Zavala

Abstract Recent progress in understanding de Sitter spacetime in supergravity and string theory has led to the development of a four dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua, also called de Sitter supergravity. One approach makes use of constrained (nilpotent) superfields, while an alternative one couples supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action. These two approaches have been shown to give rise to the same 4D action. A novel approach to de Sitter vacua in supergravity involves the generalisation of unimodular gravity to supergravity using a super-Stückelberg mechanism. In this paper, we make a connection between this new approach and the previous two which are in the context of nilpotent superfields and the goldstino brane. We show that upon appropriate field redefinitions, the 4D actions match up to the cubic order in the fields. This points at the possible existence of a more general framework to obtain de Sitter spacetimes from high-energy theories.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hiroshi Isono ◽  
Hoiki Madison Liu ◽  
Toshifumi Noumi

Abstract We study wavefunctions of heavy scalars on de Sitter spacetime and their implications to dS/CFT correspondence. In contrast to light fields in the complementary series, heavy fields in the principal series oscillate outside the cosmological horizon. As a consequence, the quadratic term in the wavefunction does not follow a simple scaling and so it is hard to identify it with a conformal two-point function. In this paper, we demonstrate that it should be interpreted as a two-point function on a cyclic RG flow which is obtained by double-trace deformations of the dual CFT. This is analogous to the situation in nonrelativistic AdS/CFT with a bulk scalar whose mass squared is below the Breitenlohner-Freedman (BF) bound. We also provide a new dS/CFT dictionary relating de Sitter two-point functions and conformal two-point functions in the would-be dual CFT.


Sign in / Sign up

Export Citation Format

Share Document