Molecular Basis Associated with the Control of Primordial Follicle Activation During Transplantation of Cryopreserved Ovarian Tissue

Author(s):  
Carmen Terren ◽  
Carine Munaut
2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
C De Roo ◽  
S Lierman ◽  
K Tilleman ◽  
P De Sutter

Abstract STUDY QUESTION What is the role of the Hippo and PI3K/Akt pathway in follicles during ovarian tissue culture in tissue derived from oncological patients and transgender men? SUMMARY ANSWER Results highlight a Hippo pathway driven primordial follicle activation in vitro, predominantly from Day 0 to Day 4. WHAT IS KNOWN ALREADY In-vitro ovarian tissue culture aims at activating and maturing primordial follicles for fertility restoration in patients with a threatened ovarian reserve. Not all patients are eligible for ovarian cortex transplantation and therefore several groups are attempting to culture ovarian tissue in-vitro. Cortex fragmentation disrupts the Hippo pathway, leading to increased expression of downstream growth factors and follicle growth. The PI3K/Akt pathway is considered the intracellular pathway to where different extracellular factors involved in primordial follicle activation in-vivo converge. In order to optimise current ovarian tissue culture models, information on progression of these pathways during tissue culture is mandatory. STUDY DESIGN, SIZE, DURATION The first step of a multistep cortex culture system was performed using 144 ovarian cortex pieces from a total of six patients. Per patient, 24 cortical strips were cultured for 6 days and six pieces per patient were collected for downstream analysis of follicle development and Hippo and PI3K/Akt pathway targets every second day. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissue was obtained from oncological (N = 3; 28.67 ± 4.51 years) and transgender (N = 3; 23.33 ± 1.53 years) patients. Follicles were analysed using haematoxylin-eosin staining and pathways were studied using immunohistochemistry and precise follicle excision by laser capture micro-dissection for RT-qPCR analysis. MIQE guidelines for RT-qPCR were pursued. Reference gene selection (GAPDH, RPL3A, 18s rRNA) was performed using GeNorm Reference Gene Selection Kit. Statistical analysis was conducted with IBM SPSS Statistics 23 (Poisson regression, negative binomial regression, ANOVA and paired t-test). MAIN RESULTS AND THE ROLE OF CHANCE Immunohistochemical analysis confirmed a Hippo pathway driven primordial follicle activation due to mechanical manipulation of the cortical strips. Ovarian tissue preparation and culture induced the inhibitory phosphorylated Yes-associated protein (pYAP) to disappear in granulosa cells of primordial follicles on Day 2. The stimulatory YAP on the contrary appeared in primordial granulosa cells over increasing culture days. Looking at the YAP target connective tissue growth factor (CTGF), a significantly up-regulated CTGF was noted in primordial follicles when comparing Day 2 and Day 4 (ratio Day 2/4 = 0.082; P < 0.05), clearly showing an effect on the Hippo pathway in primordial follicles during tissue culture. Follicle classification showed a significant drop in estimated primordial follicle counts in the oncological cohort (−78%; P = 0.021) on Day 2 and in the transgender cohort on Day 4 (−634%; P = 0.008). Intermediate follicle counts showed a non-significant increasing trend to during culture and this follicle recruitment and growth resulted in a significant rise in estimated primary follicle counts on Day 6 in oncological patients (170%; P = 0.025) and, although limited in absolute numbers, a significant increase in secondary follicles on Day 4 (367%; P = 0.021) in the transgender cohort. Subsequent antral follicle development could not be observed. LIMITATIONS, REASONS FOR CAUTION A limitation is the small sample size, inherent to this study subject, especially as a large amount of tissue was needed per patient to reduce inter-patient variation in different downstream analysis techniques. A particular and specific weakness of this study is the inability to include an age-matched control group. WIDER IMPLICATIONS OF THE FINDINGS These findings support an adapted tissue preparation for Hippo pathway disruption and a shorter first phase of tissue culture. This work may also have implications for transplantation of cryopreserved tissue as larger strips (and thus slower burnout due to less Hippo pathway disruption) could be a benefit. STUDY FUNDING/COMPETING INTEREST(S) This research was financially supported by the Foundation Against Cancer (Stichting tegen Kanker, TBMT001816N), the Flemish Foundation of Scientific Research (FWO Vlaanderen, FWO G0.065.11N10) and the Gender Identity Research and Education Society (GIRES) foundation. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


Zygote ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 537-549 ◽  
Author(s):  
Regislane P. Ribeiro ◽  
Antonia M.L.R. Portela ◽  
Anderson W.B. Silva ◽  
José J.N. Costa ◽  
José R.S. Passos ◽  
...  

SummaryThis study aims to investigate the effects of jacalin and follicle-stimulating hormone (FSH) on activation and survival of goat primordial follicles, as well as on gene expression in cultured ovarian tissue. Ovarian fragments were cultured for 6 days in minimum essential medium (MEM) supplemented with jacalin (10, 25, 50 or 100 μg/ml – Experiment 1) or in MEM supplemented with jacalin (50 μg/ml), FSH (50 ng/ml) or both (Experiment 2). Non-cultured and cultured tissues were processed for histological and ultrastructural analysis. Cultured tissues from Experiment 2 were also stored to evaluate the expression of BMP-15, KL (Kit ligand), c-kit, GDF-9 and proliferating cell nuclear antigen (PCNA) by real-time polymerase chain reaction (PCR). The results of Experiment 1 showed that, compared with tissue that was cultured in control medium, the presence of 50 μg/ml of jacalin increased both the percentages of developing follicles and viability. In Experiment 2, after 6 days, higher percentages of normal follicles were observed in tissue cultured in presence of FSH, jacalin or both, but no synergistic interaction between FSH and jacalin was observed. These substances had no significant effect on the levels of mRNA for BMP-15 and KL, but FSH increased significantly the levels of mRNA for PCNA and c-kit. On the other hand, jacalin reduced the levels of mRNA for GDF-9. In conclusion, jacalin and FSH are able to improve primordial follicle activation and survival after 6 days of culture. Furthermore, presence of FSH increases the expression of mRNA for PCNA and c-kit, but jacalin resulted in lower GDF-9 mRNA expression.


2019 ◽  
Vol 25 (11) ◽  
pp. 706-716 ◽  
Author(s):  
J Grosbois ◽  
M Vermeersch ◽  
M Devos ◽  
H J Clarke ◽  
I Demeestere

Abstract The reproductive lifespan of a woman is determined by the gradual recruitment of quiescent follicles into the growing pool. In humans, ovarian tissue removal from its in vivo environment induces spontaneous activation of resting follicles. Similarly, pharmacological activation of the PI3K/Akt pathway leads to accelerated follicle recruitment, but has been associated with follicular damage. Recent findings demonstrate that everolimus (EVE), an mTORC1 inhibitor, limits primordial follicle activation. However, its potential benefit regarding growing follicle integrity remains unexplored. Ovarian cortical fragments were exposed to ± EVE for 24 h and cultured for an additional 5 days. After 0, 1 and 6 days of culture, fragments were either processed for ultrastructural analysis or subjected to follicular isolation for gene expression and immunofluorescence assessments. Data from transmission electron microscopy showed that growing follicles displayed similar ultrastructural features irrespective of the conditions and maintained close contacts between germinal and stromal compartments. Establishment of intra-follicular communication was confirmed by detection of a gap junction component, Cx43, in both groups throughout culture, whereas transzonal projections, which physically link granulosa cells to oocyte, formed later in EVE-treated follicles. Importantly, levels of GJA1 mRNA, encoding for the Cx43 protein, significantly increased from Day 0 to Day 1 in the EVE group, but not in the control group. Given that EVE-treated follicles were smaller than controls, these findings suggest that EVE might facilitate the establishment of appropriate intercellular communications without impairing follicle ultrastructure. Therefore, mTORC1 inhibitors might represent an attractive tool to delay the culture-induced primordial follicle activation while maintaining follicles in a functionally integrated state.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Mohammad Jafari Atrabi ◽  
Parimah Alborzi ◽  
Vahid Akbarinejad ◽  
Rouhollah Fathi

Summary In vitro activation of primordial follicles could serve as a safe method to preserve fertility in patients with cancer subjected to ovarian tissue cryopreservation during oncotherapy, however the culture medium for this purpose requires to be optimized. Granulosa cell conditioned medium (GCCM) has been recognized to enhance primordial follicle activation and the present study was conducted to understand whether addition of pyruvate, a combination of insulin, transferrin and selenium (ITS) or testosterone to GCCM could improve its efficiency in this regard. To this end, 1-day-old mouse ovaries were cultured in four different media including CON (control; containing GGCM only), PYR (containing GCCM plus pyruvate), ITS (containing GCCM plus ITS) or TES (containing GCCM plus testosterone) for 11 days. Furthermore, follicular dynamics and gene expression of factors involved in follicular development were assessed using histological examination and RT-PCR, respectively, on days 5 and 11 of culture. Pyruvate decreased follicular activation, but it enhanced the progression of follicles to the primary stage. Moreover, it upregulated Bmp15 and Cx37 (P < 0.05). In the ITS group, activation of follicles was not affected and total number of follicles was reduced by day 11 of culture. Additionally, ITS downregulated Pi3k, Gdf9, Bmp15 and Cx37 (P < 0.05). Although testosterone did not affect primordial follicle activation, it enhanced the development of follicles up to the preantral stage (P < 0.05). Furthermore, testosterone inhibited the expression of Pten but stimulated the expression of Gdf9 and Cx37 (P < 0.05). In conclusion, the present study revealed that inclusion of pyruvate and testosterone into GCCM could enhance the early development of follicles in cultured 1-day-old mouse ovaries.


2020 ◽  
Vol 41 (6) ◽  
pp. 847-872
Author(s):  
Johanne Grosbois ◽  
Melody Devos ◽  
Isabelle Demeestere

Abstract In recent years, ovarian tissue cryopreservation has rapidly developed as a successful method for preserving the fertility of girls and young women with cancer or benign conditions requiring gonadotoxic therapy, and is now becoming widely recognized as an effective alternative to oocyte and embryo freezing when not feasible. Primordial follicles are the most abundant population of follicles in the ovary, and their relatively quiescent metabolism makes them more resistant to cryoinjury. This dormant pool represents a key target for fertility preservation strategies as a resource for generating high-quality oocytes. However, development of mature, competent oocytes derived from primordial follicles is challenging, particularly in larger mammals. One of the main barriers is the substantial knowledge gap regarding the regulation of the balance between dormancy and activation of primordial follicles to initiate their growing phase. In addition, experimental and clinical factors also affect dormant follicle demise, while the mechanisms involved remain largely to be elucidated. Moreover, most of our basic knowledge of these processes comes from rodent studies and should be extrapolated to humans with caution, considering the differences between species in the reproductive field. Overcoming these obstacles is essential to improving both the quantity and the quality of mature oocytes available for further fertilization, and may have valuable biological and clinical applications, especially in fertility preservation procedures. This review provides an update on current knowledge of mammalian primordial follicle activation under both physiological and nonphysiological conditions, and discusses implications for fertility preservation and priorities for future research.


2020 ◽  
Author(s):  
V. Praveen Chakravarthi ◽  
Subhra Ghosh ◽  
Katherine F. Roby ◽  
Michael W. Wolfe ◽  
M. A. Karim Rumi

AbstractOver the entire reproductive lifespan in mammals, a fixed number of primordial follicles serve as the source of mature oocytes. Uncontrolled and excessive activation of primordial follicles can lead to depletion of the ovarian reserve. We observed that disruption of ESR2-signaling results in increased activation of primordial follicles in Esr2-null (Esr2-/-) rats. However, follicle assembly was unaffected, and the total number of follicles remained comparable between neonatal wildtype and Esr2-/- ovaries. While the activated follicle counts were increased in Esr2-/- ovary, the number of primordial follicles were markedly decreased. Excessive recruitment of primordial follicles led to premature ovarian senescence in Esr2-/- rats and was associated with reduced levels of serum AMH and estradiol. Disruption of ESR2-signaling through administration of a selective antagonist (PHTPP) increased the number of activated follicles in wildtype rats, whereas a selective agonist (DPN) decreased follicle activation. In contrast, primordial follicle activation was not increased in the absence of ESR1 indicating that the regulation of primordial follicle activation is ESR2-specific. Follicle activation was also increased in Esr2-mutants lacking the DNA-binding domain, suggesting a role for the canonical transcriptional activation function. Both primordial and activated follicles express ESR2 suggesting a direct regulatory role for ESR2 within these follicles. We also detected that loss of ESR2 augmented the activation of AKT, ERK and mTOR pathways. Our results indicate that the lack of ESR2 upregulated both granulosa and oocyte factors, which can facilitate AKT and mTOR activation in Esr2-/- ovaries leading to increased activation of primordial follicles.


Reproduction ◽  
2007 ◽  
Vol 133 (5) ◽  
pp. 855-863 ◽  
Author(s):  
George B John ◽  
Lane J Shirley ◽  
Teresa D Gallardo ◽  
Diego H Castrillon

Primordial follicles are long-lived structures assembled early in life. The mechanisms that control the balance between the conservation and the activation of primordial follicles are critically important for fertility and dictate the onset of menopause. The forkhead transcription factor Foxo3 serves an essential role in these processes by suppressing the growth of primordial follicles, thereby preserving them until later in life. While other factors regulating primordial follicle growth have been described, most serve multiple functions at several stages of female germ cell or follicle development, and corresponding mouse mutants exhibit pleiotropic phenotypes with disruption of multiple stages of follicle assembly, development, or survival. To investigate the possibility that Foxo3 also functions in other aspects of ovarian development beyond its known role in primordial follicle activation (PFA), we performed detailed analyses of mouse ovaries including electron microscopy to study primordial follicle structure, assembly, and early growth. These analyses revealed that the timing of primordial follicle assembly, early oocyte survival, and the expression of early germ line markers were unaffected in early Foxo3 ovaries. Taken together, these studies demonstrate that the phenotype associated with Foxo3 deficiency is remarkably specific for PFA and further support the placement of Foxo3 in a unique phenotypic class among mammalian female sterile mutants. Lastly, we discuss the implications of the specificity of this mutant phenotype with regard to the hypothesis that oocyte regeneration may occur in adults and serves as a means to replenish oocytes lost via natural physiological processes.


Reproduction ◽  
2018 ◽  
Vol 156 (1) ◽  
pp. F59-F73 ◽  
Author(s):  
Anamaria C Herta ◽  
Francesca Lolicato ◽  
Johan E J Smitz

The currently available assisted reproduction techniques for fertility preservation (i.e.in vitromaturation (IVM) andin vitrofertilization) are insufficient as stand-alone procedures as only few reproductive cells can be conserved with these techniques. Oocytes in primordial follicles are well suited to survive the cryopreservation procedure and of use as valuable starting material for fertilization, on the condition that these could be grown up to fully matured oocytes. Our understanding of the biological mechanisms directing primordial follicle activation has increased over the last years and this knowledge has paved the way toward clinical applications. New multistepin vitrosystems are making use of purified precursor cells and extracellular matrix components and by applying bio-printing technologies, an adequate follicular niche can be built. IVM of human oocytes is clinically applied in patients with polycystic ovary/polycystic ovary syndrome; related knowhow could become useful for fertility preservation and for patients with maturation failure and follicle-stimulating hormone resistance. The expectations from the research on human ovarian tissue and immature oocytes cultures, in combination with the improved vitrification methods, are high as these technologies can offer realistic potential for fertility preservation.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
C Terren ◽  
M Nisolle ◽  
C Munaut

Abstract Study question Which signalling pathways are implicated in primordial follicle activation induced by cryopreservation and/or organotypic culture? Is it possible to limit this activation through pharmacological inhibitors? Summary answer Our findings provide support for the hypothesis that mTOR and PI3K inhibitors might represent an attractive tool to delay cryopreservation- and culture-induced primordial follicle activation. What is known already Cryopreservation of ovarian tissue containing immature primordial follicles followed by auto-transplantation (OTCTP) is the only option available to preserve the fertility of prepubertal patients or patients requiring urgent therapy for aggressive malignancies. However, a major obstacle in this process is follicular loss immediately after grafting, possibly due to slow neovascularization, apoptosis and/or massive follicular recruitment. In vitro and in vivo studies indicate that the PI3K/PTEN/Akt and mTOR signalling pathways are involved in follicle activation. The transplantation process seems to be the major cause of primordial follicle activation after OTCTP but information about how cryopreservation itself impacts follicle activation is sparse. Study design, size, duration Whole murine ovaries (4-8-weeks old) were cryopreserved by slow freezing and exposed to LY294002 (a powerful PI3K inhibitor) or rapamycin (a specific mTOR inhibitor) during cryopreservation and/or organotypic in vitro culture for a 24 h or 2 days. Participants/materials, setting, methods Western Blot and immunofluorescence analyses were used to determine the activation of PI3K/PTEN/Akt and mTOR signalling pathways in murine ovaries cryopreserved and/or organotypically cultured with/without inhibitors.Follicles were quantified according to their maturation degree on H&E stained histological sections.  Main results and the role of chance Ratio of phosphorylated Akt or rps6 to total proteins (p-Akt/Akt and p-rps6/rps6) was increased in slow-frozen murine ovaries compared to control fresh ovaries, indicating an activation of the PI3K/PTEN/Akt and mTOR signalling pathways. The use of pharmacological inhibitors of follicle signalling pathways (LY294002 (25µM) and rapamycin (1µM)) during the cryopreservation process decreased p-Akt/Akt and p-rps6/rps6 ratios. In vitro organotypic culture for 24 h increased only the activation of the PI3K/PTEN/Akt pathway, as shown by increased p-Akt/Akt ratio in fresh ovaries cultured for 24 h compared to fresh non-cultured ovaries. This activation can be counteracted by cryopreservation of murine ovaries with rapamycin followed by in vitro culture for 24 h in the presence of LY294002. Follicle density quantifications indicated that when cryopreserved ovaries were maintained in culture for 2 days, a decrease of primordial follicle density concomitant with an increase of secondary and more mature follicles were found in comparison to slow-frozen/thawed ovaries without culture. Supplementation of the culture medium with LY294002 and rapamycin for 24 h or 2 days preserved primordial follicle densities compared to ovaries cultured without inhibitors. Limitations, reasons for caution This study is an in vitro study using murine ovaries. To analyze the efficiency of LY294002 and rapamycin to limit cryopreservation and transplantation induced follicle recruitment, these inhibitors should be tested in an in vivo model. Furthermore, these findings will need to be confirmed with human samples. Wider implications of the findings We showed for the first-time that the sequential use of pharmacological inhibitors, rapamycin during the slow freezing process followed by organotypic culture supplemented with LY294002, is effective to limit early primordial follicle depletion. Trial registration number /


Sign in / Sign up

Export Citation Format

Share Document