scholarly journals In vitro follicle culture in the context of IVF

Reproduction ◽  
2018 ◽  
Vol 156 (1) ◽  
pp. F59-F73 ◽  
Author(s):  
Anamaria C Herta ◽  
Francesca Lolicato ◽  
Johan E J Smitz

The currently available assisted reproduction techniques for fertility preservation (i.e.in vitromaturation (IVM) andin vitrofertilization) are insufficient as stand-alone procedures as only few reproductive cells can be conserved with these techniques. Oocytes in primordial follicles are well suited to survive the cryopreservation procedure and of use as valuable starting material for fertilization, on the condition that these could be grown up to fully matured oocytes. Our understanding of the biological mechanisms directing primordial follicle activation has increased over the last years and this knowledge has paved the way toward clinical applications. New multistepin vitrosystems are making use of purified precursor cells and extracellular matrix components and by applying bio-printing technologies, an adequate follicular niche can be built. IVM of human oocytes is clinically applied in patients with polycystic ovary/polycystic ovary syndrome; related knowhow could become useful for fertility preservation and for patients with maturation failure and follicle-stimulating hormone resistance. The expectations from the research on human ovarian tissue and immature oocytes cultures, in combination with the improved vitrification methods, are high as these technologies can offer realistic potential for fertility preservation.

2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
C De Roo ◽  
S Lierman ◽  
K Tilleman ◽  
P De Sutter

Abstract STUDY QUESTION What is the role of the Hippo and PI3K/Akt pathway in follicles during ovarian tissue culture in tissue derived from oncological patients and transgender men? SUMMARY ANSWER Results highlight a Hippo pathway driven primordial follicle activation in vitro, predominantly from Day 0 to Day 4. WHAT IS KNOWN ALREADY In-vitro ovarian tissue culture aims at activating and maturing primordial follicles for fertility restoration in patients with a threatened ovarian reserve. Not all patients are eligible for ovarian cortex transplantation and therefore several groups are attempting to culture ovarian tissue in-vitro. Cortex fragmentation disrupts the Hippo pathway, leading to increased expression of downstream growth factors and follicle growth. The PI3K/Akt pathway is considered the intracellular pathway to where different extracellular factors involved in primordial follicle activation in-vivo converge. In order to optimise current ovarian tissue culture models, information on progression of these pathways during tissue culture is mandatory. STUDY DESIGN, SIZE, DURATION The first step of a multistep cortex culture system was performed using 144 ovarian cortex pieces from a total of six patients. Per patient, 24 cortical strips were cultured for 6 days and six pieces per patient were collected for downstream analysis of follicle development and Hippo and PI3K/Akt pathway targets every second day. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissue was obtained from oncological (N = 3; 28.67 ± 4.51 years) and transgender (N = 3; 23.33 ± 1.53 years) patients. Follicles were analysed using haematoxylin-eosin staining and pathways were studied using immunohistochemistry and precise follicle excision by laser capture micro-dissection for RT-qPCR analysis. MIQE guidelines for RT-qPCR were pursued. Reference gene selection (GAPDH, RPL3A, 18s rRNA) was performed using GeNorm Reference Gene Selection Kit. Statistical analysis was conducted with IBM SPSS Statistics 23 (Poisson regression, negative binomial regression, ANOVA and paired t-test). MAIN RESULTS AND THE ROLE OF CHANCE Immunohistochemical analysis confirmed a Hippo pathway driven primordial follicle activation due to mechanical manipulation of the cortical strips. Ovarian tissue preparation and culture induced the inhibitory phosphorylated Yes-associated protein (pYAP) to disappear in granulosa cells of primordial follicles on Day 2. The stimulatory YAP on the contrary appeared in primordial granulosa cells over increasing culture days. Looking at the YAP target connective tissue growth factor (CTGF), a significantly up-regulated CTGF was noted in primordial follicles when comparing Day 2 and Day 4 (ratio Day 2/4 = 0.082; P < 0.05), clearly showing an effect on the Hippo pathway in primordial follicles during tissue culture. Follicle classification showed a significant drop in estimated primordial follicle counts in the oncological cohort (−78%; P = 0.021) on Day 2 and in the transgender cohort on Day 4 (−634%; P = 0.008). Intermediate follicle counts showed a non-significant increasing trend to during culture and this follicle recruitment and growth resulted in a significant rise in estimated primary follicle counts on Day 6 in oncological patients (170%; P = 0.025) and, although limited in absolute numbers, a significant increase in secondary follicles on Day 4 (367%; P = 0.021) in the transgender cohort. Subsequent antral follicle development could not be observed. LIMITATIONS, REASONS FOR CAUTION A limitation is the small sample size, inherent to this study subject, especially as a large amount of tissue was needed per patient to reduce inter-patient variation in different downstream analysis techniques. A particular and specific weakness of this study is the inability to include an age-matched control group. WIDER IMPLICATIONS OF THE FINDINGS These findings support an adapted tissue preparation for Hippo pathway disruption and a shorter first phase of tissue culture. This work may also have implications for transplantation of cryopreserved tissue as larger strips (and thus slower burnout due to less Hippo pathway disruption) could be a benefit. STUDY FUNDING/COMPETING INTEREST(S) This research was financially supported by the Foundation Against Cancer (Stichting tegen Kanker, TBMT001816N), the Flemish Foundation of Scientific Research (FWO Vlaanderen, FWO G0.065.11N10) and the Gender Identity Research and Education Society (GIRES) foundation. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


Zygote ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 537-549 ◽  
Author(s):  
Regislane P. Ribeiro ◽  
Antonia M.L.R. Portela ◽  
Anderson W.B. Silva ◽  
José J.N. Costa ◽  
José R.S. Passos ◽  
...  

SummaryThis study aims to investigate the effects of jacalin and follicle-stimulating hormone (FSH) on activation and survival of goat primordial follicles, as well as on gene expression in cultured ovarian tissue. Ovarian fragments were cultured for 6 days in minimum essential medium (MEM) supplemented with jacalin (10, 25, 50 or 100 μg/ml – Experiment 1) or in MEM supplemented with jacalin (50 μg/ml), FSH (50 ng/ml) or both (Experiment 2). Non-cultured and cultured tissues were processed for histological and ultrastructural analysis. Cultured tissues from Experiment 2 were also stored to evaluate the expression of BMP-15, KL (Kit ligand), c-kit, GDF-9 and proliferating cell nuclear antigen (PCNA) by real-time polymerase chain reaction (PCR). The results of Experiment 1 showed that, compared with tissue that was cultured in control medium, the presence of 50 μg/ml of jacalin increased both the percentages of developing follicles and viability. In Experiment 2, after 6 days, higher percentages of normal follicles were observed in tissue cultured in presence of FSH, jacalin or both, but no synergistic interaction between FSH and jacalin was observed. These substances had no significant effect on the levels of mRNA for BMP-15 and KL, but FSH increased significantly the levels of mRNA for PCNA and c-kit. On the other hand, jacalin reduced the levels of mRNA for GDF-9. In conclusion, jacalin and FSH are able to improve primordial follicle activation and survival after 6 days of culture. Furthermore, presence of FSH increases the expression of mRNA for PCNA and c-kit, but jacalin resulted in lower GDF-9 mRNA expression.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Mohammad Jafari Atrabi ◽  
Parimah Alborzi ◽  
Vahid Akbarinejad ◽  
Rouhollah Fathi

Summary In vitro activation of primordial follicles could serve as a safe method to preserve fertility in patients with cancer subjected to ovarian tissue cryopreservation during oncotherapy, however the culture medium for this purpose requires to be optimized. Granulosa cell conditioned medium (GCCM) has been recognized to enhance primordial follicle activation and the present study was conducted to understand whether addition of pyruvate, a combination of insulin, transferrin and selenium (ITS) or testosterone to GCCM could improve its efficiency in this regard. To this end, 1-day-old mouse ovaries were cultured in four different media including CON (control; containing GGCM only), PYR (containing GCCM plus pyruvate), ITS (containing GCCM plus ITS) or TES (containing GCCM plus testosterone) for 11 days. Furthermore, follicular dynamics and gene expression of factors involved in follicular development were assessed using histological examination and RT-PCR, respectively, on days 5 and 11 of culture. Pyruvate decreased follicular activation, but it enhanced the progression of follicles to the primary stage. Moreover, it upregulated Bmp15 and Cx37 (P < 0.05). In the ITS group, activation of follicles was not affected and total number of follicles was reduced by day 11 of culture. Additionally, ITS downregulated Pi3k, Gdf9, Bmp15 and Cx37 (P < 0.05). Although testosterone did not affect primordial follicle activation, it enhanced the development of follicles up to the preantral stage (P < 0.05). Furthermore, testosterone inhibited the expression of Pten but stimulated the expression of Gdf9 and Cx37 (P < 0.05). In conclusion, the present study revealed that inclusion of pyruvate and testosterone into GCCM could enhance the early development of follicles in cultured 1-day-old mouse ovaries.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Yan Zhang ◽  
Xiaomei Zhou ◽  
Ye Zhu ◽  
Hanbin Wang ◽  
Juan Xu ◽  
...  

Abstract Premature ovarian insufficiency (POI) is characterized by symptoms caused by ovarian dysfunction in patients aged &lt;40 years. It is associated with a shortened reproductive lifespan. The only effective treatment for patients who are eager to become pregnant is IVF/Embryo Transfer (ET) using oocytes donated by young women. However, the use of the technique is constrained by the limited supply of oocytes and ethical issues. Some patients with POI still have some residual follicles in the ovarian cortex, which are not regulated by gonadotropin. These follicles are dormant. Therefore, activating dormant primordial follicles (PFs) to obtain high-quality oocytes for assisted reproductive technology may bring new hope for patients with POI. Therefore, this study aimed to explore the factors related to PF activation, such as the intercellular signaling network, the internal microenvironment of the ovary and the environment of the organism. In addition, we discussed new strategies for fertility preservation, such as in vitro activation and stem cell transplantation.


2020 ◽  
Vol 41 (6) ◽  
pp. 847-872
Author(s):  
Johanne Grosbois ◽  
Melody Devos ◽  
Isabelle Demeestere

Abstract In recent years, ovarian tissue cryopreservation has rapidly developed as a successful method for preserving the fertility of girls and young women with cancer or benign conditions requiring gonadotoxic therapy, and is now becoming widely recognized as an effective alternative to oocyte and embryo freezing when not feasible. Primordial follicles are the most abundant population of follicles in the ovary, and their relatively quiescent metabolism makes them more resistant to cryoinjury. This dormant pool represents a key target for fertility preservation strategies as a resource for generating high-quality oocytes. However, development of mature, competent oocytes derived from primordial follicles is challenging, particularly in larger mammals. One of the main barriers is the substantial knowledge gap regarding the regulation of the balance between dormancy and activation of primordial follicles to initiate their growing phase. In addition, experimental and clinical factors also affect dormant follicle demise, while the mechanisms involved remain largely to be elucidated. Moreover, most of our basic knowledge of these processes comes from rodent studies and should be extrapolated to humans with caution, considering the differences between species in the reproductive field. Overcoming these obstacles is essential to improving both the quantity and the quality of mature oocytes available for further fertilization, and may have valuable biological and clinical applications, especially in fertility preservation procedures. This review provides an update on current knowledge of mammalian primordial follicle activation under both physiological and nonphysiological conditions, and discusses implications for fertility preservation and priorities for future research.


2020 ◽  
Vol 21 (9) ◽  
pp. 3120
Author(s):  
Sook Young Yoon ◽  
Ran Kim ◽  
Hyunmee Jang ◽  
Dong Hyuk Shin ◽  
Jin Il Lee ◽  
...  

Peroxisome proliferator-activated receptor gamma (PPARγ) is known as a regulator of cellular functions, including adipogenesis and immune cell activation. The objectives of this study were to investigate the expression of PPARγ and identify the mechanism of primordial follicle activation via PPARγ modulators in mouse ovaries. We first measured the gene expression of PPARγ and determined its relationship with phosphatase and tensin homolog (PTEN), protein kinase B (AKT1), and forkhead box O3a (FOXO3a) expression in neonatal mouse ovaries. We then incubated neonatal mouse ovaries with PPARγ modulators, including rosiglitazone (a synthetic agonist of PPARγ), GW9662 (a synthetic antagonist of PPARγ), and cyclic phosphatidic acid (cPA, a physiological inhibitor of PPARγ), followed by transplantation into adult ovariectomized mice. After the maturation of the transplanted ovaries, primordial follicle growth activation, follicle growth, and embryonic development were evaluated. Finally, the delivery of live pups after embryo transfer into recipient mice was assessed. While PPARγ was expressed in ovaries from mice of all ages, its levels were significantly increased in ovaries from 20-day-old mice. In GW9662-treated ovaries in vitro, PTEN levels were decreased, AKT was activated, and FOXO3a was excluded from the nuclei of primordial follicles. After 1 month, cPA-pretreated, transplanted ovaries produced the highest numbers of oocytes and polar bodies, exhibited the most advanced embryonic development, and had the greatest blastocyst formation rate compared to the rosiglitazone- and GW9662-pretreated groups. Additionally, the successful delivery of live pups after embryo transfer into the recipient mice transplanted with cPA-pretreated ovaries was confirmed. Our study demonstrates that PPARγ participates in primordial follicle activation and development, possibly mediated in part by the PI3K/AKT signaling pathway. Although more studies are required, adapting these findings for the activation of human primordial follicles may lead to treatments for infertility that originates from poor ovarian reserves.


2006 ◽  
Vol 189 (1) ◽  
pp. 113-125 ◽  
Author(s):  
J R V Silva ◽  
T Tharasanit ◽  
M A M Taverne ◽  
G C van der Weijden ◽  
R R Santos ◽  
...  

The aim of the present study was to investigate the effects of activin-A and follistatin on in vitro primordial and primary follicle development in goats. To study primordial follicle development (experiment 1), pieces of ovarian cortex were cultured in vitro for 5 days in minimal essential medium (MEM) supplemented with activin-A (0, 10 or 100 ng/ml), follistatin (0, 10 or 100 ng/ml) or combinations of the two. After culture, the numbers of primordial follicles and more advanced follicle stages were calculated and compared with those in non-cultured tissue. Protein and mRNA expression of activin-A, follistatin, Kit ligand (KL), growth differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15) in non-cultured and cultured follicles were studied by immunohistochemistry and PCR. To evaluate primary follicle growth (experiment 2), freshly isolated follicles were cultured for 6 days in MEM plus 100 ng/ml activin-A, 100 ng/ml follistatin or 100 ng/ml activin-A plus 200 ng/ml follistatin. Morphology, follicle and oocyte diameters in cultured tissue and isolated follicles before and after culture were assessed. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) reactions were performed to study DNA fragmentation in follicles. In experiment 1, it was found that goat primordial follicles were activated to develop into more advanced stages, i.e. intermediate and primary follicles, during in vitro culture, but neither activin-A nor follistatin affected the number of primordial follicles that entered the growth phase. Activin-A treatment enhanced the number of morphologically normal follicles and stimulated their growth during cortical tissue culture. The effects were, however, not counteracted by follistatin. The follicles in cultured goat tissue maintained their expression of proteins and mRNA for activin-A, follistatin, KL, GDF-9 and BMP-15. Fewer than 30% of the atretic follicles in cultured cortical tissue had TUNEL-positive (oocyte or granulosa) cells. Activin-A did not affect the occurrence of TUNEL-positive cells in follicles within cortical tissue. In experiment 2, addition of activin-A to cultured isolated primary follicles significantly stimulated their growth, the effect being counteracted by follistatin. Absence of such a neutralizing effect of follistatin in the cultures with ovarian cortical tissue can be due to lower dose of follistatin used and incomplete blockage of activin in these experiments. In contrast to cortical enclosed atretic follicles, all atretic follicles that had arisen in cultures with isolated primary follicles had TUNEL-positive cells, which points to differences between isolated and ovarian tissue-enclosed follicles with regard to the followed pathways leading to their degeneration. In summary, this in vitro study has demonstrated that cultured goat primordial follicles are activated to grow and develop into intermediate and primary follicles. During in vitro culture, the follicles maintain their ability to express activin-A, follistatin, KL, GDF-9 and BMP-15. The in vitro growth and survival of activated follicles enclosed in cortical tissue and the in vitro growth of isolated primary follicles are stimulated by activin-A.


2018 ◽  
Vol 36 (5) ◽  
pp. 491-499 ◽  
Author(s):  
Michael J. Bertoldo ◽  
Kirsty A. Walters ◽  
William L. Ledger ◽  
Robert B. Gilchrist ◽  
Pascal Mermillod ◽  
...  

2018 ◽  
Vol 26 (8) ◽  
pp. 1094-1104
Author(s):  
Liping Zheng ◽  
Ruichen Luo ◽  
Tie Su ◽  
Liaoliao Hu ◽  
Fengxin Gao ◽  
...  

The activation of primordial follicles is critical to ovarian follicle development, which directly influences female fertility and reproductive life span. Several studies have suggested a role for long noncoding RNAs (lncRNAs) in ovarian function. However, the precise involvement of lncRNAs in the initiation of primordial follicles is still unknown. Here, an in vitro culture model was used to investigate the roles of lncRNAs in primordial follicle activation. We found that primordial follicles in day 3 mouse ovaries were activated after culturing for 8 days in vitro, as indicated by ovarian morphology changes, increases in primary follicle number, and downregulation of mammalian Sterile 20-like kinase messenger RNA (mRNA) and upregulation of growth differentiation factor 9 mRNA. We next examined lncRNA expression profiles by RNA sequencing at the transcriptome level and found that among 60 078 lncRNAs, 6541 lncRNA were upregulated and 2135 lncRNA were downregulated in 3-day ovaries cultured for 8 days in vitro compared with ovaries from day 3 mice. We also found that 4171 mRNAs were upregulated and 1795 were downregulated in the cultured ovaries. Gene ontology and pathway analyses showed that the functions of differentially expressed lncRNA targets and mRNAs were closely linked with many processes and pathways related to ovary development, including cell proliferation and differentiation, developmental processes, and other signaling transduction pathways. Additionally, many novel identified lncRNAs showed inducible expression, suggesting that these lncRNAs may be good candidates for investigating mouse primordial follicle activation. This study provides a foundation for further exploring lncRNA-related mechanisms in the initiation of mouse primordial follicles.


Sign in / Sign up

Export Citation Format

Share Document