scholarly journals Modulation spaces as a smooth structure in noncommutative geometry

2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Are Austad ◽  
Franz Luef

AbstractWe demonstrate how to construct spectral triples for twisted group $$C^*$$ C ∗ -algebras of lattices in phase space of a second-countable locally compact abelian group using a class of weights appearing in time–frequency analysis. This yields a way of constructing quantum $$C^k$$ C k -structures on Heisenberg modules, and we show how to obtain such structures using Gabor analysis and certain weighted analogues of Feichtinger’s algebra. We treat the standard spectral triple for noncommutative 2-tori as a special case, and as another example we define a spectral triple on noncommutative solenoids and a quantum $$C^k$$ C k -structure on the associated Heisenberg modules.

1973 ◽  
Vol 9 (1) ◽  
pp. 73-82 ◽  
Author(s):  
U.B. Tewari ◽  
A.K. Gupta

Let G be a locally compact abelian group and Ĝ be its dual group. For 1 ≤ p < ∞, let Ap (G) denote the set of all those functions in L1(G) whose Fourier transforms belong to Lp (Ĝ). Let M(Ap (G)) denote the set of all functions φ belonging to L∞(Ĝ) such that is Fourier transform of an L1-function on G whenever f belongs to Ap (G). For 1 ≤ p < q < ∞, we prove that Ap (G) Aq(G) provided G is nondiscrete. As an application of this result we prove that if G is an infinite compact abelian group and 1 ≤ p ≤ 4 then lp (Ĝ) M(Ap(G)), and if p > 4 then there exists ψ є lp (Ĝ) such that ψ does not belong to M(Ap (G)).


1995 ◽  
Vol 47 (2) ◽  
pp. 225-245
Author(s):  
Nakhlé Asmar ◽  
Earl Berkson ◽  
T. A. Gillespie

AbstractIn the context of a locally compact abelian group, we establish maximal theorem counterparts for weak type (1,1) multipliers of the classical de Leeuw theorems for individual strong multipliers. Special methods are developed to handle the weak type (1,1) estimates involved since standard linearization methods such as Lorentz space duality do not apply to this case. In particular, our central result is a maximal theorem for convolutions with weak type (1,1) multipliers which opens avenues of approximation. These results complete a recent series of papers by the authors which extend the de Leeuw theorems to a full range of strong type and weak type maximal multiplier estimates in the abstract setting.


1990 ◽  
Vol 42 (1) ◽  
pp. 109-125
Author(s):  
Nakhlé Asmar

(1.1) The conjugate function on locally compact abelian groups. Let G be a locally compact abelian group with character group Ĝ. Let μ denote a Haar measure on G such that μ(G) = 1 if G is compact. (Unless stated otherwise, all the measures referred to below are Haar measures on the underlying groups.) Suppose that Ĝ contains a measurable order P: P + P ⊆P; PU(-P)= Ĝ; and P⋂(—P) =﹛0﹜. For ƒ in ℒ2(G), the conjugate function of f (with respect to the order P) is the function whose Fourier transform satisfies the identity for almost all χ in Ĝ, where sgnP(χ)= 0, 1, or —1, according as χ =0, χ ∈ P\\﹛0﹜, or χ ∈ (—P)\﹛0﹜.


1981 ◽  
Vol 83 ◽  
pp. 1-4
Author(s):  
Jesper Laub

Let G be a locally compact abelian group and N a non-zero convolution kernel on G satisfying the domination principle. We define the cone of N-excessive measures E(N) to be the set of positive measures ξ for which N satisfies the relative domination principle with respect to ξ. For ξ ∈ E(N) and Ω ⊆ G open the reduced measure of ξ over Ω is defined as.


2018 ◽  
Vol 40 (2) ◽  
pp. 309-352
Author(s):  
JEAN-BAPTISTE AUJOGUE

In this work we consider translation-bounded measures over a locally compact Abelian group$\mathbb{G}$, with a particular interest in their so-called diffraction. Given such a measure$\unicode[STIX]{x1D714}$, its diffraction$\widehat{\unicode[STIX]{x1D6FE}}$is another measure on the Pontryagin dual$\widehat{\mathbb{G}}$, whose decomposition into the sum$\widehat{\unicode[STIX]{x1D6FE}}=\widehat{\unicode[STIX]{x1D6FE}}_{\text{p}}+\widehat{\unicode[STIX]{x1D6FE}}_{\text{c}}$of its atomic and continuous parts is central in diffraction theory. The problem we address here is whether the above decomposition of$\widehat{\unicode[STIX]{x1D6FE}}$lifts to$\unicode[STIX]{x1D714}$itself, that is to say, whether there exists a decomposition$\unicode[STIX]{x1D714}=\unicode[STIX]{x1D714}_{\text{p}}+\unicode[STIX]{x1D714}_{\text{c}}$, where$\unicode[STIX]{x1D714}_{\text{p}}$and$\unicode[STIX]{x1D714}_{\text{c}}$are translation-bounded measures having diffraction$\widehat{\unicode[STIX]{x1D6FE}}_{\text{p}}$and$\widehat{\unicode[STIX]{x1D6FE}}_{\text{c}}$, respectively. Our main result here is the almost sure existence, in a sense to be made precise, of such a decomposition. It will also be proved that a certain uniqueness property holds for the above decomposition. Next, we will be interested in the situation where translation-bounded measures are weighted Meyer sets. In this context, it will be shown that the decomposition, whether it exists, also consists of weighted Meyer sets. We complete this work by discussing a natural generalization of the considered problem.


Sign in / Sign up

Export Citation Format

Share Document