Unraveling the effects of surface preparation on the pitting corrosion resistance of austenitic stainless steel

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
M. J. Sohrabi ◽  
H. Mirzadeh ◽  
C. Dehghanian
2013 ◽  
Vol 718-720 ◽  
pp. 29-32 ◽  
Author(s):  
Xiao Liu ◽  
Yu Bo

The anodic polarization curves of 21Cr-11Ni austenitic stainless steels with various RE contents in 3.5% NaCl neutral solutions have been measured by electrochemical methods. The effect of RE on pitting corrosion resistance of 21Cr-11Ni stainless steels has been studied by the metallographic examination. The results show that sulfide and other irregular inclusions are modified to round or oval-shaped RE2O2S and RES after adding RE to 21Cr-11Ni stainless steesl. RE makes sulfide, and other irregular inclusions change to dispersed round or oval-shaped RE inclusions, effectively inhibits the occurrence of pitting corrosion, thereby enhancing the corrosion resistance of 21Cr-11Ni austenitic stainless steels.


2009 ◽  
Vol 289-292 ◽  
pp. 501-508 ◽  
Author(s):  
C.M. Abreu ◽  
M.J. Cristóbal ◽  
P. Merino ◽  
G. Pena ◽  
M.C. Pérez

Research on the effect of ion implantation on the corrosion behaviour of metals has been carried out for years, but some difficulties arise in the comparison of the obtained results due to variations in experimental conditions (alloys, surface preparation, doses, experimental techniques...). This work tries to overcome those differences, presenting the effect of several elements (Ce+, N+, Cr+ and Cr+ N+) implanted in similar conditions on the pitting corrosion resistance of AISI 430 stainless steel. Potentiodynamic measurements in 1M NaCl demonstrate the beneficial effect of all the implanted elements, showing that Ce+ is the less efficient ion, while Cr+ N+ co-implantation gives the best results in terms of localized attack resistance. Pitting morphology is explained in terms of the XPS and GIXRD data that allow chemical and structural characterization of the implanted layer. Those results help to enlighten the protection mechanisms involved in the considered implantations.


10.30544/274 ◽  
2017 ◽  
Vol 23 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Bore V. Jegdic ◽  
Biljana Bobić ◽  
Milica Bošnjakov ◽  
Behar Alić

Pitting corrosion resistance and intergranular corrosion of the austenitic stainless steel X5Cr Ni18-10 were tested on the base metal, heat affected zone and weld metal. Testing of pitting corrosion was performed by the potentiodynamic polarization method, while testing of intergranular corrosion was performed by the method of electrochemical potentiokinetic reactivation with double loop. The base metal was completely resistant to intergranular corrosion, while the heat affected zone showed a slight susceptibility to intergranular corrosion. Indicators of pitting corrosion resistance for the weld metal and the base metal were very similar, but their values are significantly higher than the values for the heat affected zone. This was caused by reduction of the chromium concentration in the grain boundary areas in the heat affected zone, even though the carbon content in the examined stainless steel is low (0.04 wt. % C).


Alloy Digest ◽  
1997 ◽  
Vol 46 (6) ◽  

Abstract Sandvik 3R64 is an austenitic stainless steel with a high molybdenum content. Significant properties are improved general and pitting corrosion resistance in comparison with Type 316L. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as heat treating and joining. Filing Code: SS-686. Producer or source: Sandvik.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1258
Author(s):  
Jinshan He ◽  
Shiguang Xu ◽  
Wenxin Ti ◽  
Yaolei Han ◽  
Jinna Mei ◽  
...  

The pitting corrosion resistance of the austenitic stainless steel 308L-316L welded joint was investigated by electrochemical tests. It is found that the weld zone was the most critical for pits to initiate in the welded joint due to relatively instable passive film with few Mo and inhomogeneous passive film induced by multiple (Mn, Al, and Si) oxides and continuous network of 13.94 vol.% δ ferrites. By statistical analysis, 53.8% pits initiated at (Mn, Al, and Si) oxides, 23.0% in austenite, and 23.2% at interface between ferrite and austenite. In addition, heat-affected zone was prone to have pitting corrosion compared with the base metal since residual strain was much higher in the region.


2011 ◽  
Vol 415-417 ◽  
pp. 784-788
Author(s):  
Li Wei Xu ◽  
Hua Bing Li ◽  
Qi Feng Ma ◽  
Zhou Hua Jiang ◽  
Dong Ping Zhan

The effect of cold working on semiconducting properties of passive film and pitting corrosion resistance of 19Cr-18Mn-2Mo-0.9N high nitrogen austenitic stainless were investigated by anodic polarization, AC impedance and capacitance measurement methods. With increasing the cold rolling deformation ranging from 0% to 60%, the passive region of high nitrogen austenitic stainless steel decreases, and the corrosion potential, EIS radius and polarization resistance all decreases. The Mott-Schottky result indicates that the pitting corrosion resistance deteriorates with increment of cold rolling deformation. The results show that the passive films formed on high nitrogen austenitic stainless steel with different cold rolling deformation behave as n-type semiconductors. With increasing the cold rolling deformation grade, the donor density (ND) increases, but the thickness of the space-charge layer (W) decreases. The decreasing of the thickness of space-charge layer with increment of cold rolling deformation is attributed to the inceasing defect which deteriorates the stability of the passive film.


Sign in / Sign up

Export Citation Format

Share Document