scholarly journals The Enigma of BIM

Author(s):  
Alexander Koutamanis ◽  
Andy Dainty ◽  
Thomas Kvan ◽  
Žiga Turk

AbstractThis position paper outlines a number of key questions concerning BIM (Building Information Modelling), as well as the arguments and the historical background behind them. These include the incomplete theory of BIM, the reasons for the emergence of understanding BIM as a panacea for all ills in AECO (architecture, engineering, construction and operation of buildings), the relation between BIM promise and BIM performance, some of the key misconceptions and misunderstandings concerning BIM, and fundamental concerns about what is assumed to be the future of BIM. The paper concludes by suggesting four themes for further discussion and research into the nature and future of BIM and of AECO computerization in general: BIM theory, implementation, the view from practice and legislation / policies.

Author(s):  
J.H.M. Tah ◽  
A.H. Oti ◽  
F.H. Abanda

AbstractElements that constitute the built environment are vast and so are the independent systems developed to model its various aspects. Many of these systems have been developed under various assumptions and approaches to execute functions that are distinct, complementary or sometimes similar. Furthermore, these systems are ever increasing in number and often assume similar nomenclatures and acronyms, thereby exacerbating the challenges of understanding their peculiar functions, definitions and differences. The current societal demand to improve sustainability performance through collaboration as well as whole-system and through-life thinking is driving the need to integrate independent systems associated with different aspects and scales of the built environment to deliver smart solutions and services that improve the well-being of citizens. The contemporary object-oriented digitization of real-world elements appears to provide a leeway for amalgamating the modelling systems of various domains in the built environment which we termed as built environment information modelling (BeIM). These domains include architecture, engineering, construction as well as urban planning and design. Applications such as building information modelling, geographic information systems and 3D city modelling systems are now being integrated for city modelling purposes. The various works directed at integrating these systems are examined, revealing that current research efforts on integration fall into three categories: (1) data/file conversion systems, (2) semantic mapping systems and (3) the hybrid of both. The review outcome suggests that good knowledge of these domains and how their respective systems operate is vital to pursuing holistic systems integration in the built environment.


2019 ◽  
pp. 560-570
Author(s):  
Liangxiu Han ◽  
Haşim Altan ◽  
Masa Noguchi

Understanding how occupants manage their energy use in homes and how their behaviour influence household energy consumption in domestic environments has been challenging. There seems to be several major factors contributing towards achieving optimal performance in designing, constructing and maintaining a sustainable home using Building Information Modelling (BIM) based approaches. This study focuses on investigating the relationship between user behaviour and energy consumption through the in-depth analysis of energy usage patterns collected from a selected affordable terraced house in Prestwick, Scotland, as an initial attempt towards the future integration with BIM systems. For the purpose of this feasibility study, indoor temperature, relative humidity and CO2 sensors, as well as a gas-electricity-water utility monitor were installed in the selected home occupied by a working class nuclear household. The study encompasses the analyses of energy usage patterns in their daily life. It is confirmed that domestic energy consumption is affected by the occupants' presence and behaviour. Moreover, this paper discusses a possibility that the energy prediction approach taken in this study could work alongside BIM systems applied for housing suppliers' design decision-making on the delivery of energy efficient homes of the future.


2021 ◽  
Vol 13 (0) ◽  
pp. 1-4
Author(s):  
Marius Viliūnas ◽  
Darius Migilinskas

Building Information Modelling (BIM) is increasingly being implemented both in the World and in Lithuania. The benefits provided by BIM promise a much more efficient and smoother construction process and suggest that the construction market of the future will continue to develop based on the BIM methodology. However, both the implementation and development of BIM can face some challenges, obstacles and limitations for construction market participants that occur with the use of BIM and that can slow down the smooth implementation of a project. This paper examines the difficulties of BIM in the implementation and use phase. During the research, the literature sources were analysed describing the implementation of BIM in the development of residential and other projects. The advantages and challenges of BIM described by the authors were analysed, and the emerging problems were highlighted. The literature sources analysed and found BIM limitations were grouped according to the most frequently mentioned.Building Information Modelling (BIM) is increasingly being implemented both in the World and in Lithuania. The benefits provided by BIM promise a much more efficient and smoother construction process and suggest that the construction market of the future will continue to develop based on the BIM methodology. However, both the implementation and development of BIM can face some challenges, obstacles and limitations for construction market participants that occur with the use of BIM and that can slow down the smooth implementation of a project. This paper examines the difficulties of BIM in the implementation and use phase. During the research, the literature sources were analysed describing the implementation of BIM in the development of residential and other projects. The advantages and challenges of BIM described by the authors were analysed, and the emerging problems were highlighted. The literature sources analysed and found BIM limitations were grouped according to the most frequently mentioned.


Author(s):  
Bilal Succar

Building Information Modelling (BIM) is an expanding collection of concepts and tools which have been attributed with transformative capabilities within the Architecture, Engineering, Construction and Operations (AECO) industry. BIM discussions have grown to accommodate increasing software capabilities, infinitely varied deliverables, and competing standards emanating from an abundance of overlapping definitions attempting to delineate the BIM term. This chapter will steer away from providing its own definition of BIM yet concurs with those identifying it as a catalyst for change (Bernstein, 2005) poised to reduce industry’s fragmentation (CWIC, 2004), improve its efficiency (Hampson & Brandon, 2004) and lower its high costs of inadequate interoperability (NIST, 2004). In essence, BIM represents an array of possibilities and challenges which need to be understood and met respectively through a measurable and repeatable approach. This chapter briefly explores the multi-dimensional nature of the BIM domain and then introduces a knowledge tool to assist individuals, organisations and project teams to assess their BIM capability, maturity and improve their performance (Figure 1). The first section introduces BIM Fields and Stages which lay the foundations for measuring capability and maturity. Section 2 introduces BIM Competencies which can be used as active implementation steps or as performance assessment areas. Section 3 introduces an Organisational Hierarchy/Scale suitable for tailoring capability and maturity assessments according to markets, industries, disciplines and organisational sizes. Section 4 explores the concepts behind ‘capability maturity models’ and then adopts a five-level BIM-specific Maturity Index (BIMMI). Section 5 introduces the BIM Maturity Matrix (BIm³), a performance measurement and improvement tool which identifies the correlation between BIM Stages, Competency Sets, Maturity Levels and Organisational Scales. Finally, Section 6 introduces a Competency Granularity Filter which enables the tailoring of BIM tools, guides and reports according to four different levels of assessment granularity.


2013 ◽  
Vol 2 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Derek Jones ◽  
Emma Dewberry

This paper considers the barriers to BIM adoption and demonstrates they are symptoms of existing problems in the Architecture, Engineering, Construction, and Operations (AECO) industry. When current external pressures are considered, a varied and complex set of problems emerge that require a significant paradigm change if they are to be resolved sustainably. It is argued that Building Information Modelling (BIM) does not represent a paradigm change on its own and the concept of the design ecology is presented as a framework within which BIM can act as a catalyst for change. Specific affordances of this model are presented in terms of responding to the challenges presented in the Low Carbon Construction report (Innovation and Growth Team, 2010) and to the general characteristics of the original problems identified. Examples are presented to demonstrate that this is already emerging in practice and some suggested areas of further investigation are suggested.


Author(s):  
Katie Graham ◽  
Lara Chow ◽  
Stephen Fai

Purpose Over the past decade, national and international organisations concerned with regulating the architecture, engineering, construction and operations industry have been working to create guidelines for the integration of building information modelling (BIM) through the establishment of benchmarks to measure the quality and quantity of information in a given model. Until recently, these benchmarks – and BIM guidelines in general – have been developed for the design and construction of new projects, providing very little guidance for using BIM in the context of conservation and rehabilitation. The purpose of this paper is to introduce a new benchmark specific to existing and heritage buildings developed by Carleton Immersive Media Studio (CIMS). Design/methodology/approach To create the new benchmark, CIMS conducted a critical evaluation of established and emerging BIM guidelines including: Level of Development Specification 2016 (BIMFORUM), architecture, engineering and construction (Can) BIM Protocol (CanBIM), PAS 1102-2: Specification for Information Management for the Capital Delivery Phase of Construction Projects Using BIM (British Standards Institution) and Level of Accuracy Specification Guide (US Institute of Building Documentation). Findings Using the authors’ on-going work at the Parliament Hill National Historic Site in Ottawa, Canada, the CIMS created and applied a three-category system that evaluated the level of detail, information and accuracy within the building information model independently. Originality/value In this paper, the authors discuss the CIMS’ work to date and propose next steps.


Sign in / Sign up

Export Citation Format

Share Document