scholarly journals Nonlinear Model of Coastal Flooding by a Highly Turbulent Tsunami

2021 ◽  
Vol 28 (4) ◽  
pp. 436-451
Author(s):  
Sergey A. Arsen’yev ◽  
Lev V. Eppelbaum

AbstractWhen a tsunami wave comes from ocean and propagates through the shelf, it is very important to predict several dangerous factors: (a) maximum flooding of the coast, (b) tsunami wave height on the coast, (c) velocity of the tsunami front propagation through the coast, and (d) time of tsunami arriving at a given point in the coast and around it. In this study we study the separate case where the angle of inclination α of the seacoast is equal to zero. A linear solution of this problem is unsatisfactory since it gives an infinite rate of the coastal inundation that means the coast is flooded instantly and without a frontal boundary. In this study, we propose a principally new exact analytical solution of this problem based on nonlinear theory for the reliable recognizing these essential tsunami characteristics. The obtained formulas indicate that the tsunami wave can be stopped (or very strongly eliminated) in the shelf zone until approaching the shoreline. For this aim, it is necessary to artificially raising several dozens of bottom protrusions to the level of the calm water.

2021 ◽  
Vol 8 (4) ◽  
pp. 315-322
Author(s):  
Eunju Lee ◽  
Sungwon Shin

Predicting tsunami hazards based on the tsunami source, propagation, runup patterns is critical to protect humans and property. Potential tsunami zone, as well as the historical tsunamis in 1983 and 1993, can be a threat to the east coast of South Korea. The Korea Meteorological Administration established a tsunami forecast warning system to reduce damage from tsunamis, but it does not consider tsunami amplification in the bay due to resonance. In this study, the Numerical model, Cornell Multi-grid Coupled Tsunami model, was used to investigate natural frequency in the bay due to coastal geometry. The study area is Yeongill bay in Pohang, southeast of South Korea, because this area is a natural bay and includes three harbors where resonance significantly occurs. This study generated a Gaussian-shaped tsunami, propagated it into the Yeongill bay, and compared numerical modeling results with data from tide gauge located in Yeongill bay during several storms through spectral analysis. It was found that both energies of tsunamis and storms were amplified at the same frequencies, and maximum tsunami wave height was amplified about 3.12 times. The results in this study can contribute to quantifying the amplification of tsunami heights in the bay.


2019 ◽  
Vol 35 (1) ◽  
pp. 113-136 ◽  
Author(s):  
Katsuichiro Goda ◽  
Guillermo Franco ◽  
Jie Song ◽  
Alin Radu

This study presents a calibration of CAT-in-a-Box and intensity-based index trigger mechanisms for parametric tsunami catastrophe bonds. Trigger conditions for the former are based on fundamental event characteristics, such as earthquake location and magnitude, whereas those for the latter utilize tsunami wave height measurements at a series of observation stations. These solutions are illustrated for a building portfolio in Iwanuma City in Miyagi Prefecture, Japan, by considering a new seafloor observation network S-net off the Tohoku-Hokkaido coast of Japan. Performances of the two types of parametric solutions are quantitatively evaluated and compared with each other to discuss their advantages and disadvantages.


2016 ◽  
Vol 2016.91 (0) ◽  
pp. 152-155
Author(s):  
Hiroaki ISHIKAWA ◽  
Takafumi NAGANO ◽  
Takayuki NAKANISHI ◽  
Hiroshi SAKAMAKI ◽  
Tetsutaro YAMADA

1981 ◽  
Vol 5 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Narendra Saxena ◽  
Adam Zielinski

2020 ◽  
Author(s):  
Arthur Hrast Essenfelder ◽  
Mattia Amadio ◽  
Stefano Bagli ◽  
Paolo Mazzoli

<p>On the 12<sup>th</sup> of November of 2019, flood levels in the Venice Lagoon have reached the mark of 1.87 metres, the second-highest level since records began in 1923. Although a recurrent problem in Venice, the significance of this event have raise awareness of the issue of coastal inundation hazard in Italy, particularly at the highly vulnerable territory of the regions facing the North Adriatic Sea. Several are the processes that contribute to a costal inundation event. On the short term, processes such as high tide and storm surge events can result in sea levels, potentially triggering devastating impacts on human settlements and activities. On the long term, the land subsidence and mean sea level (MSL) changes are important factors; in fact, in some regions such as Jakarta and Bangkok the land is expected to subside by more than 1 meter, while MSL is expected to rise during the next decades, reaching global mean absolute values ranging from 0.3–0.6m (RCP 2.6) to 0.5–1.1m (RCP 8.5) by the end of the century. The combined effect of global sea level rise, local subsidence, and short term phenomena can potentially increase the frequency and intensity of extreme sea levels (ESL), posing a major threat to coastal areas. Currently, almost 700 million people live in low-lying coastal areas, and about 13% of them are exposed to a 100-year flood. In Italy, a territory that is highly vulnerable to coastal flooding are the Regions facing the North Adriatic Sea, mainly due to two factors: the morphological characteristic of this territory, characterised by low-lying areas, and the bathymetry and shape of the Adriatic basin, which cause water level to accumulate and increase rapidly during storm surge events, especially during winter. In this paper, we evaluate two different coastal inundation modelling techniques, one hydrostatic (as part of the EIT Climate-KIC SaferPLACES project) and another hydrodynamic (the ANUGA model), by stressing the models with different ESL, both for the historical mean sea level and for MSL projections at 2050 and 2100. The two different inundation models are tested on three pilot sites particularly vulnerable to coastal flooding located in the North Adriatic Sea: Venice, Cesenatico, and Rimini. We compare our modelling results with existing hazard records and previous hazard and risk assessments. Finally, we apply a flood damage model developed for Italy to estimate the potential economic damages linked to the different flood scenarios, and we calculate the change in expected annual damages according to the relative extreme sea levels.</p>


2018 ◽  
Vol 7 (4.35) ◽  
pp. 270
Author(s):  
A. F. Aziz ◽  
N. H. Mardi ◽  
M. A. Malek

In recent years, studies regarding a new source of tsunami-genic earthquake at South China Sea region known as Manila Trench earthquake have attracted the attention of many researchers. It is expected that this subduction zone is capable to trigger large moment magnitude earthquake and affects countries located within South China Sea. The objective of this study is to project tsunami wave height and arrival time generated from Manila Trench earthquake towards coastal areas located along east-coast of Peninsular Malaysia. This study focuses on simulating tsunami at four different moment magnitudes by using TUNA-M2 model to record wave height and arrival time at the offshore areas. Then the Green’s law is used to approximate reliable tsunami wave height when approaching onshore. Results obtained in this study showed that tsunami waves from Manila Trench are estimated to arrive at coastal areas of east-coast Peninsular Malaysia between 9.1 to 10.25 hours post-earthquake occurrence. The observation points located at offshore of Kelantan are anticipated to experience the highest wave height as compared to other observation points located at offshore areas of Terengganu and Pahang. This study is important to the coastal communities as it provides vital information on possible tsunami occurrences in the future.


Sign in / Sign up

Export Citation Format

Share Document