Section 3 update: Genotyping of bacterial isolates from the environment using Low-Molecular-Weight RNA fingerprints

2008 ◽  
pp. 2489-2512
Author(s):  
Manfred G. Fle ◽  
Jan L. W. Rademaker ◽  
Frank J. Louws ◽  
James Versalovic ◽  
Frans J. De Bruijn

1993 ◽  
Vol 30 (1) ◽  
pp. 9-13 ◽  
Author(s):  
R. Vicuña ◽  
B. González ◽  
D. Seelenfreund ◽  
C. Rüttimann ◽  
L. Salas

2021 ◽  
Author(s):  
K. Taylor Cyle ◽  
Annaleise R. Klein ◽  
Ludmilla Aristilde ◽  
Carmen Enid Martínez

AbstractConstantly in flux, low-molecular-weight organic substances (LMWOSs) are at the nexus between microorganisms, plant roots, detritus, and the soil mineral matrix. Nominal oxidation state of carbon (NOSC) has been put forward as one way to parameterize microbial uptake rates of LMWOSs and efficiency of carbon incorporation into new biomass. In this study, we employed an ecophysiological approach to test these proposed relationships using targeted exometabolomics (1H-NMR, HR-LCMS) coupled with stable isotope (13C) probing. We assessed the role of compound class and oxidation state on uptake kinetics and substrate-specific carbon use efficiency (SUE) during the growth of three model soil microorganisms (Penicillium spinulosum, Paraburkholderia solitsugae, and Ralstonia pickettii) in media containing 34 common LMWOSs. Microbial isolates were chosen to span a gradient in growth rate (0.046-0.316 hr−1) and differ phylogenetically (a fungal isolate and two bacterial isolates). Clustered, co-utilization of LMWOSs occured for all three organisms, but temporal cluster separation was most apparent for P. solitsugae. Potential trends (p <0.05) for early utilization of more oxidized substrates were present for the two bacterial isolates (P. solitsugae and R. pickettii), but high variability (R2 > 0.15) and a small effect of NOSC indicate these are not useful relationships for prediction. The SUEs ranged from 0.16-0.99 and the hypothesized inverse relationship between NOSC and SUE was not observed. Thus, our results do not provide compelling support for NOSC as a predictive tool, implying that metabolic strategies of organisms may be more important than chemical identity in determining LMWOS cycling in soils.ImportanceCommunity-level observations from soils indicate that low-molecular-weight compounds of higher oxidation state tend to be depleted from soil solution faster and incorporated less efficiently into microbial biomass under oxic conditions. Here, we tested hypothetical relationships between substrate chemical characteristics and the order of substrate utilization by aerobic heterotrophs at the population-level in culture, using two bacterial isolates (Ralstonia pickettii and Paraburkholderia solitsugae) and one fungal isolate from soil (Penicillium spinulosum). We found weak relationships indicating earlier uptake of more oxidized substrates by the two bacterial isolates but no relationship for the fungal isolate. We found no relationship between substrate identity and substrate use efficiency. Our findings indicate that substrate chemical characteristics have limited utility for modeling the depletion of low-molecular-weight organics from soil solution and incorporation into biomass over broader phylogenetic gradients.


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


1998 ◽  
Vol 1 (5) ◽  
pp. 166-174 ◽  
Author(s):  
Evelyn R Hermes De Santis ◽  
Betsy S Laumeister ◽  
Vidhu Bansal ◽  
Vandana Kataria ◽  
Preeti Loomba ◽  
...  

VASA ◽  
2007 ◽  
Vol 36 (1) ◽  
pp. 17-22
Author(s):  
Schulz ◽  
Kesselring ◽  
Seeberger ◽  
Andresen

Background: Patients admitted to hospital for surgery or acute medical illnesses have a high risk for venous thromboembolism (VTE). Today’s widespread use of low molecular weight heparins (LMWH) for VTE prophylaxis is supposed to have reduced VTE rates substantially. However, data concerning the overall effectiveness of LMWH prophylaxis is sparse. Patients and methods: We prospectively studied all patients with symptomatic and objectively confirmed VTE seen in our hospital over a three year period. Event rates in different wards were analysed and compared. VTE prophylaxis with Enoxaparin was given to all patients at risk during their hospital stay. Results: A total of 50 464 inpatients were treated during the study period. 461 examinations were carried out for symptoms suggestive of VTE and yielded 89 positive results in 85 patients. Seventy eight patients were found to have deep vein thrombosis, 7 had pulmonary embolism, and 4 had both deep venous thrombosis and pulmonary embolism. The overall in hospital VTE event rate was 0.17%. The rate decreased during the study period from 0.22 in year one to 0,16 in year two and 0.13 % in year three. It ranged highest in neurologic and trauma patients (0.32%) and lowest (0.08%) in gynecology-obstetrics. Conclusions: With a simple and strictly applied regimen of prophylaxis with LMWH the overall rate of symptomatic VTE was very low in our hospitalized patients. Beside LMWH prophylaxis, shortening hospital stays and substantial improvements in surgical and anasthesia techniques achieved during the last decades probably play an essential role in decreasing VTE rates.


Sign in / Sign up

Export Citation Format

Share Document