Improved technique for the determination of low energy boundaries by the rotating-sphere-on-a-plate method: Results for grain boundaries in the Cu/Ni system

1987 ◽  
Vol 35 (10) ◽  
pp. 2557-2565 ◽  
Author(s):  
R. Maurer
Author(s):  
Galina D. Tolstolutskaya ◽  
Michael A. Tikhonovsky ◽  
Victor N. Voyevodin ◽  
Arkadiy V. Nikitin ◽  
Aleksander S. Tortika ◽  
...  

In the present paper processes of sputtering and surface modification of commercial and experimental FeCrAl composites alloyed with yttrium, molybdenum and zirconium were investigated. Using a field-emission scanning electron microscope, it was shown that under the influence of low-energy (500 eV) hydrogen plasma with a flux about 3.2 ⋅ 1020 m–2 ⋅ s–1 and fluence 4 ⋅ 1024 m–2 at Troom, surface morphology develops due to the formation of grooves along grain boundaries, macro- and microcracks, as well as intragranular pits due to the sputtering of precipitates. Determination of the composition of precipitates by an energy dispersive X-ray spectrometer allowed to establish that aluminum oxide is preferentially distributed in the grains of FeCrAl-based alloys, and yttrium oxides are localized along grain boundaries. Results of erosion studies indicated that the sputtering yields for hydrogen on all alloys are 1.05– 0.38 at./ion and doesn’t exceed those for published data for pure iron and chromium. For experimental alloys doped with yttrium and molybdenum found that the obtained sputtering coefficients were in several times lower than for steel SS304 and only one and a half times higher compared to tungsten.


Author(s):  
D.R. Rasmussen ◽  
N.-H. Cho ◽  
C.B. Carter

Domains in GaAs can exist which are related to one another by the inversion symmetry, i.e., the sites of gallium and arsenic in one domain are interchanged in the other domain. The boundary between these two different domains is known as an antiphase boundary [1], In the terminology used to describe grain boundaries, the grains on either side of this boundary can be regarded as being Σ=1-related. For the {110} interface plane, in particular, there are equal numbers of GaGa and As-As anti-site bonds across the interface. The equilibrium distance between two atoms of the same kind crossing the boundary is expected to be different from the length of normal GaAs bonds in the bulk. Therefore, the relative position of each grain on either side of an APB may be translated such that the boundary can have a lower energy situation. This translation does not affect the perfect Σ=1 coincidence site relationship. Such a lattice translation is expected for all high-angle grain boundaries as a way of relaxation of the boundary structure.


Ion cyclotron resonance (i. c. r.) is a technique for the study of ion-molecule reactions in the collisional range from thermal to several electron volts. The study of these reactions at low energy has been given impetus by the discovery of their importance in the ionosphere and in interstellar space. This communication identifies some possible weaknesses inherent in current i. c. r. work and suggests an improved technique with which it is possible to determine absolute rate constants more reliably. As an illustration of the technique a measurement of the rate constant for the reaction CH 4 + + CH 4 → k CH 5 + + CH 3 is presented. This value is k = 1.21 ± 0.09 × 10 -15 m 3 s -1 . A new i. c. r. cell design is discussed with which it is hoped to provide further improvement in reliability by the production of a homogeneous radiofrequency field within a true quadrupole trap.


Sign in / Sign up

Export Citation Format

Share Document