Journal of the Belarusian State University. Physics
Latest Publications


TOTAL DOCUMENTS

81
(FIVE YEARS 81)

H-INDEX

1
(FIVE YEARS 1)

Published By Belarusian State University

2617-3999, 2520-2243

Author(s):  
Victor M. Anishchik ◽  
Valiantzina A. Harushka ◽  
Uladzimir A. Pilipenka ◽  
Vladimir V. Ponariadov ◽  
Vitali A. Saladukha ◽  
...  

The results of the effect of rapid heat treatment on the optical characteristics of a silicon wafer surface in the region of the G-point in the Brillouin zone are presented for different types of silicon wafers conductivity, their doping level, the covalent radii of dopants and the crystallographic orientation of the wafer surface. The absorption coefficient and refractive index of the initial 100 mm diameter samples KDB-12 <100>, KDB-10 <111>, KDB-0.005 <100> and KES-0.015 <100>, underwent standard chemical-mechanical polishing, was measured on a Uvisel 2 ellipsometer (Horiba Scientific, France) in the spectral range 0.6–6.0 eV (200–2100 nm) before and after rapid heat treatment. The incidence angle of the light beam was 70° relative to the sample plane. It is shown that the changes in the optical characteristics of the silicon surface in the spectral region of the location of the G-point in the Brillouin zone after rapid heat treatment is due to a decrease in the surface deformation potential due to solid-phase recrystallisation of the mechanically damaged layer. It has been established that carrying out the rapid heat treatment of silicon samples with a high boron concentration leads to a more significant decrease in the refractive index and absorption compared with silicon with a low boron concentration, due to an increase in the depletion of the silicon surface with boron as a result of diffusion processes at the silicon – silicon dioxide interface.


Author(s):  
Mikhail V. Korzhik

An influence of the various relaxation processes of the electronic excitations causing the scintillation in the crystalline compounds under ionising radiation is analysed. It was found that the intracenter relaxation of electronic excitations in the luminescence ion forms a physical limit for the time resolution of the scintillation detector. The limit of the time resolution, which can be provided when measuring the ionising radiation with a scintillation detector, has been established by simulation. A comparison of the time resolution limits for various errors by the electronic part of the ionising radiation detector is performed. It is shown that inorganic scintillation materials based on single crystals activated by cerium ions have a limit of 10 ps, while self-activated scintillators with low yield and short scintillation kinetics may show results not worse than 20 ps. It has been demonstrated that a further increase in the scintillation yield while keeping the short kinetics in self-activated materials can provide a better time resolution in comparison with Ce-activated materials in future detectors.


Author(s):  
Andrei I. Kashuba ◽  
Bogdan V. Andriyevsky ◽  
Hrigorii A. Ilchuk ◽  
Mikhal Piasecki ◽  
Igor’ V. Semkiv ◽  
...  

Cadmium telluride (CdTe) thin films relate to AII BVI compounds and show semiconductor behaviour. They present an important research field because of their wide application in various optoelectronic devices. CdTe-based solar cells attract attention since CdTe is characterised by the direct energy bandgap Eg and high absorbance, which makes it an excellent light-absorbing layer of solar cells. Material evaporation in vacuum by using the high-frequency magnetron sputtering method is one of the most advantageous methods for obtaining uniform films. The present work is dedicated to the investigation of the optical properties of CdTe thin film, which is produced on quarts substrate by the high-frequency magnetro sputtering method. The optical transmission, reflectivity, and μ-Raman spectra of the CdTe thin film have been determined. Linearity of the spectral dependence of the coefficient of optical absorption α of CdTe thin film in the coordinates (αhν)2  vs hν indicates for the direct character of optical transitions corresponding to the long-wavelength edge of fundamental absorption. The optical bandgap of the studied CdTe thin film is found to be Eg = 1.53 eV. The peaks of the experimental m-Raman spectra at 121; 139; 142; 167 and 331 cm–1 are attributed to the phonons in crystalline CdTe and Te.


Author(s):  
Victor K. Goncharov ◽  
Michail V. Puzyrev ◽  
Valery Yu. Stupakevich ◽  
Nikita I. Shulhan

The present work is devoted to the experimental determination of the uniformity of the ion flux density on a substrate with an increased size (~200 cm2 ) in order to form nanostructures by the laser-plasma method. The system for deposition of nanostructures consists of an erosion laser torch of the target material and a substrate located in a vacuum chamber. For smooth adjustment of the parameters of the deposited particles on the substrate, a grid is located between the laser target and the substrate, on which a negative potential is applied relative to the laser target. As a result, a particle stream is formed after the grid, consisting mainly of ions, whose energy can be reliably and smoothly controlled by applying a positive potential to the grid in relation to the substrate. Experiments have shown that the uniformity of the density of ion fluxes on a substrate of increased size (~200 cm2 ) in a laser-plasma source for nanocoating can be increased by applying an accelerating potential to the substrate in relation to the grid. The minimum difference between the ion flux density in the center of the target and at its edge can be reduced to ~5 %. As a result, it is technologically possible to clean the surface of the substrate with ions of the laser target material (secondary emission), create a pseudodiffusion layer of the target material in the near-surface region of the substrate, and apply the laser target material to the substrate. At the same time, all these operations can be performed sequentially without depressurising the vacuum chamber. This allows obtaining coating with good adhesion on substrates of increased size.


Author(s):  
Alexander L. Kholmetskii ◽  
Tolga Yarman ◽  
Ozan Yarman ◽  
Metin Arik

We discuss the results of modern Mössbauer experiments in a rotating system, which show the presence of an extra energy shift between the emitted and absorbed resonant radiation in addition to the relativistic energy shift of the resonant lines due to the time dilation effect in the co-rotating source and absorber with different radial coordinates. We analyse the available attempts to explain the origin of the extra energy shift, which include some extensions of special theory of relativity with hypothesis about the existence of limited acceleration in nature, with hypothesis about a so-called «time-dependent Doppler effect», as well as in the framework of the general theory of relativity under re-analysis of the metric effects in the rotating system, which is focused to the problem of correct synchronisation of clocks in a rotating system with a laboratory clock. We show that all such attempts remain unsuccessful until the moment, and we indicate possible ways of solving this problem, which should combine metric effects in rotating systems with quantum mechanical description of resonant nuclei confined in crystal cells.


Author(s):  
Irina V. Shapochkina ◽  
Nastassia D. Savina ◽  
Elena M. Zaytseva ◽  
Viktor M. Rozenbaum ◽  
Maria I. Ikim ◽  
...  

We obtained an analytical expression for the average motion velocity of an adiabatic Brownian motor (ratchet), which operates due to small dichotomous spatially harmonic fluctuations of a stepwise potential. The symmetry properties of the average velocity as a functional of the stationary and fluctuating components of the nanoparticle potential energy are revealed, and the ranges of values of the system parameters that ensure the rightward and leftward motion of the motor are determined. We showed that the average motor velocity is a non-monotonic function of the stepwise potential height. For a singular (infinitely high and narrow) potential barrier, the average velocity depends non-monotonically on the «power» of this barrier (the barrier width multiplied by the exponent of the ratio of the barrier height to the thermal energy). The article continues the further development of theoretical methods of symmetry analysis by applying the general approaches proposed by the authors to specific motor systems.


Author(s):  
Vitali I. Shymanski ◽  
Antons Jevdokimovs ◽  
Nikolai N. Cherenda ◽  
Valiantsin M. Astashynski ◽  
Elizaveta A. Petrikova

The results of structure and phase composition investigation in hypereutectic silumin alloy with 25 at. % Si content after high-energy pulsed compression plasma flows impact are presented in the work. The compression plasma flows impact with an absorbed energy density 25 – 40 J/cm2 allows to modify the sub-surface layer with a thickness up to 30 – 32 µm due to its melting and high rate solidification. By means of X-ray diffraction method, it was found the formation of two silicon phases with different grain sizes. The high-dispersed structure of silicon is presented in the Al-Si eutectic while the silicon phase with coarse grains exists in the primary crystals. The obtained results are the basis for a new method development for nanostructuring of the surface layers of hypereutectic silumin alloys increasing its wear resistance.


Author(s):  
Victoryia I. Halauchyk ◽  
Michail G. Lukashevich

The Hall resistance hysteresis loops in thin (d = 80 –280 nm) magnetically ordered permalloy films (Ni0.8 Fe0.2) were studied at room temperature at different angles between the film plane and the magnetic field direction (φ = 0 –360°) (extraordinary and ordinary Hall effects), at different angles (θ = 0 – 90°) between the magnetic field direction and the flowing current (planar Hall effect at φ = 0°) in a magnetic field up to B = 1.25 T. The thin films were obtained on sitall dielectric substrate by ion beam sputtering. Sharp peaks of the Hall resistance were observed in the extraordinary and planar Hall effects during the magnetisation reversal of the films due to a change of the magnetisation direction with respect to the sampling current direction. In the extraordinary Hall effect the position and full width at half maximum of a peak is determined by the angle between the magnetic field direction and the film plane. It has been shown that as the direction of the external magnetic field approaches the spontaneous magnetisation direction, both the peak magnetic field position Bp and the full width at half maximum of the peak Δ Bp increase. In the angles range of φ = 0 – 90° Bp and Δ  Bp varies in the magnetic field range from Δ  В ≈ 0.2 to 5.0 mT. A non-monotonic dependence of the planar Hall resistance and its peak position on the angle between the flowing current and the magnetic field direction was detected. It is related to the change of the longitudinal and transverse components the resistance of the magnetically ordered solids by an external magnetic field. The values of the ordinary and extraordinary Hall effects coefficients have been determined: RH0 = 6 ⋅ 10–9 m3/C and RH1 = 3.2 ⋅ 10–8 m3/C, respectively.


Author(s):  
Aliaksandr V. Melnikau ◽  
Mikhail V. Shuba

When creating a model of a composite medium based on carbon nanotubes in the gigahertz and subterahertz ranges, it is necessary to take into account the tunnel coupling between nanoparticles. To simplify the consideration, we present a model of a composite medium consisting of the same randomly oriented linear chains of parallel single walled metallic carbon nanotubes connected by tunnel contacts. The problem of scattering of electromagnetic radiation by the chains was solved through the application of the integral equation technique of classical electrodynamics and the Landauer – Buttiker formalism for quantum transport. It is shown that electron tunnelling between the nanotubes leads to the electromagnetic size effects in chains of finite length. In this case, in the gigahertz frequency range, there is a regime in which the comparable in magnitude real and imaginary parts of the effective permittivity of the composite medium decrease with increasing frequency that is often observed in experiments. It has been found that size effects can manifest themselves within small sections of the chain limited by contacts of low conductivity. The obtained results provide an understanding of the physical mechanisms responsible for the frequency dispersion of the permittivity of composite materials based on carbon nanotubes.


Author(s):  
Vasili G. Shepelevich ◽  
Denis A. Zernitsa

The article presents the results of a study of the microstructure of the rapidly solidified foil of the hypoeutectic alloy Sn – 4.4 wt. % Zn. It was found that the investigated alloy has a two-phase structure, which consists of solid solutions of tin and zinc. Doping of tin with zinc leads to a decrease in the unit cell parameter. The difference between the unit cell parameters of a rapidly solidified alloy in comparison with an alloy of pure tin tends to decrease during holding, which is due to strong supercooling of the melt during its production at ultrahigh speeds, and the formation of a supersaturated solid solution of zinc in tin, which, due to high homological temperatures, as a consequence, active diffusion processes, decomposes at room temperature. It has been established that a microcrystalline structure is formed in the foil of the alloy under study, in the cross section of which there are uniformly distributed equiaxed dispersed dark zinc precipitates against the background of a light tin matrix; the absence of zinc plates in the foil reduces the ability to brittle fracture. The unequal distribution of the average chord of random secants on the grains in the surface layers A is caused by the release of heat, which leads to a decrease in the supercooling of the subsequent layers of the melt, and an increase in the grain size as the crystallisation front moves. It was found that in the (301) plane along the [103] direction, tin twinning is observed, which occurs under the action of quenching stresses at high crystallisation rates. The alloy under study has a (100) tin texture, the formation of which is associated with the fact that the (100) plane is the most densely packed, which promotes the growth of grains with this orientation at the highest rate.


Sign in / Sign up

Export Citation Format

Share Document