scholarly journals Adipokines Expression and Effects in Oocyte Maturation, Fertilization and Early Embryo Development: Lessons from Mammals and Birds

2020 ◽  
Vol 21 (10) ◽  
pp. 3581
Author(s):  
Anthony Estienne ◽  
Adeline Brossaud ◽  
Maxime Reverchon ◽  
Christelle Ramé ◽  
Pascal Froment ◽  
...  

Some evidence shows that body mass index in humans and extreme weights in animal models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and embryo development failures. Adipokines are hormones mainly produced and released by white adipose tissue. They play a key role in the regulation of energy metabolism. However, they are also involved in many other physiological processes including reproductive functions. Indeed, leptin and adiponectin, the most studied adipokines, but also novel adipokines including visfatin and chemerin, are expressed within the reproductive tract and modulate female fertility. Much of the literature has focused on the physiological and pathological roles of these adipokines in ovary, placenta, and uterine functions. The purpose of this review is to summarize the current knowledge regarding the involvement of leptin, adiponectin, visfatin, and chemerin in the oocyte maturation, fertilization, and embryo development in both mammals and birds.

2015 ◽  
Vol 27 (1) ◽  
pp. 203
Author(s):  
I. Lindgren ◽  
P. Humblot ◽  
D. Laskowski ◽  
Y. Sjunnesson

Dairy cow fertility has decreased during the last decades, and much evidence indicates that metabolic disorders are an important part of this decline. Insulin is a key factor in the metabolic challenge during the transition period that coincides with the oocyte maturation and may therefore have an impact on the early embryo development. The aim of this study was to test the effect of insulin during oocyte maturation on early embryo development by adding insulin during the oocyte maturation in vitro. In this study, abattoir-derived bovine ovaries were used and cumulus-oocyte complexes (n = 991) were in vitro matured for 22 h according to standard protocols. Insulin was added during maturation in vitro as follows: H (10 µg mL–1 of insulin), L (0.1 µg mL–1 of insulin), or Z (0 µg mL–1 of insulin). After maturation, oocytes were removed and fixed in paraformaldehyde before staining. Click-it TUNEL assay (Invitrogen, Stockholm, Sweden) was used for apoptotic staining and DRAQ5 (BioNordika, Stockholm, Sweden) for nuclear staining (n = 132). Cumulus-oocyte complexes were evaluated using laser scanning confocal microscope (Zeiss LSM 510, Zeiss, Oberkochen, Germany). Five levels of scans were used to assess oocyte maturation (MII stage) and apoptosis. Because of incomplete penetration of the TUNEL stain (3–5 layers of cumulus cells), only the outer 2 layers of the cumulus complex were investigated regarding apoptosis. Apoptotic index was calculated as apoptotic cells/total cells visualised. Remaining oocytes were fertilized and cultured in vitro until Day 8. Day 7 and Day 8 blastocyst formation was assessed as well as blastocyst stage and grade. Effect of insulin treatment on variables was analysed by ANOVA following arc sin √p transformation. Post-ANOVA comparisons between H+L group v. Z were performed by using the contrast option under GLM (Scheffé test). Results are presented as least squares means ± s.e. P-values ≤ 0.05 were considered as statistically significant. Insulin treatment during oocyte maturation in vitro had no significant effect on oocyte nuclear maturation or apoptotic index of the cumulus cells (Z: 0.052 ± 0.025, L: 0.039 ± 0.016, H: 0.077 ± 0.044, P > 0.05). No effect was seen on cleavage rates (Z: 0.85 ± 0.02, L: 0.85 ± 0.02, H: 0.89 ± 0.03, P > 0.05), but insulin treatment significantly decreased Day 7 rates from fertilized oocytes (Z: 0.19 ± 0.02, L: 0.14 ± 0.02, H: 0.12 ± 0.02, P < 0.05). This study also showed a significantly retarded developmental stage and decreased grade of blastocysts in insulin-treated groups taken together when compared with the control group (P < 0.05). In this study, no effect of insulin supplementation during in vitro maturation was seen on bovine oocyte maturation and apoptosis of cumulus cells, but blastocyst formation and development were negatively affected. Further studies are needed for understanding the relationship between the addition of insulin during maturation in vitro and impaired blastocyst formation. Insulin is a common supplement in the first phase of the first in vitro maturation medium for pig oocytes and is believed to have a beneficial effect on this species.Funding was received from Stiftelsen Nils Lagerlöfs Fond H12–0051-NLA.


2010 ◽  
Vol 22 (1) ◽  
pp. 226
Author(s):  
M. Techakumphu ◽  
V. Chankitisakul ◽  
K. Thaseephoo ◽  
T. Tharasanit

Microtubules and actin microfilaments have been demonstratedto be actively involved with fertilization and early embryo development. The objective of this study was to examine the redistribution of cytoskeleton and chromatin configurations in swamp buffalo oocytes through the initial cleavage event after in vitro fertilization. Sperm penetration was analysed at 6 h post IVF in 63 oocytes (3 replicates), whereas the chronology embryonic development in terms of the redistribution of cell cytoskeleton and chromatin configurations was studied in a total of 462 oocytes (7 to 8 replicates) at 12, 18, 24, 30, and 48 h after IVF. The oocytes were matured in vitro for 22 h. Then, IVF was performed as described previously (Totey et al. 1993). After fertilization, presumptive zygotes and embryos were fixed at various times (6, 12, 18, 24, 30, and 48 h) to examine spermatozoa penetration, redistribution of the cytoskeleton (microtubules and actin filaments), and chromatin configurations using epifluorescent microscopy. Staining was undertaken with wheat germ agglutinin to visualize the zona pellucida, monoclonal-α-tubulin-TRIT C to show the microtubules, 488 phalloidin to identify microfilaments, and DAPI to label the chromatin. At 6 h after fertilization, sperm penetration was observed in 44.4% of examined oocytes. At 12 h post IVF, maternal chromosomes of fertilized oocytes progressed to the second meiotic division and formed the female pronucleus simultaneously with the decondensation of paternal chromosomes. A dense network of microtubules was observed radiating from the base of the decondensing sperm head (referred to as sperm aster) At 18 h post IVF, the sperm chromatins became the male pronucleus. Simultaneously, the sperm aster increased in size and filled the whole ooplasm. The syngamy of the male and female pronuclei was completed by 24 h post IVF, which was associated with a dense array of microtubules. Cell cleavage was observed by 30 h post IVF. This was apparently facilitated by a dense network of actin microfilaments that formed in the middle of the dividing embryo. These results indicated that microtubules and actin microfilaments undergo changes after fertilization consistent with a crucial role during fertilization in swamp buffalo. The centrosomal material was paternally inherited. This work was supported by TRF-MAG (MRG-WII515S056) and CHE-TRF Senior Research Fund (RTA5080010).


2012 ◽  
Vol 24 (1) ◽  
pp. 155 ◽  
Author(s):  
V. Maillo ◽  
U. Besenfelder ◽  
V. Havlicek ◽  
M. Garrett ◽  
A. K. Kelly ◽  
...  

The aim of this study was to examine the effect of lactation and associated metabolic profiles on the ability of the reproductive tract of postpartum dairy cows to support early embryo development. Twenty-one age-matched primiparous Holstein cows were used. Immediately after calving, half of the cows were dried off while the remainder were milked twice daily. To characterise the metabolic profile of the cows, jugular blood samples were taken twice weekly starting 15 days before calving until Day 100 postpartum. At the same time, bodyweight (BW) and body condition score (BCS) were recorded. In Experiment 1, around Day 60 postpartum, the oestrous cycles of all cows were synchronized and sixty-five 2- to 4-cell in vitro-produced embryos were endoscopically transferred on Day 2 (Day 0 = oestrus) to the oviduct ipsilateral to the corpus luteum. On Day 7, the oviduct and uterus were flushed endoscopically and the number of embryos developing to the blastocyst stage was recorded. In Experiment 2, around Day 95 postpartum, cows were re-synchronized and 15 to 20 in vitro-produced blastocysts were transferred to the uterine horn ipsilateral to the corpus luteum. On Day 14, conceptuses were recovered by flushing the reproductive tract at slaughter and were measured. Jugular blood samples were taken daily from Day 0 to 7 (Exp. 1) or 14 (Exp. 2) to measure serum concentrations of progesterone. Data were analysed by ANOVA. Concentrations of NEFA and β-HB were higher (P ≤ 0.05) and glucose, insulin and IGF-1 were lower (P ≤ 0.05) in lactating compared with dry cows. BW and BCS were significantly higher in the non-lactating cows throughout the postpartum period. Recovery rates in both experiments were similar between groups (Exp. 1: 63.9 ± 7.2 vs 65.6 ± 8.6 and Exp 2: 33.3 ± 9.6 vs 39.8 ± 9.6 for dry and milking cows, respectively). In Exp. 1, of the structures recovered, significantly more developed to the blastocyst stage in the dry than in lactating cows (49.3 ± 3.8 vs 32.6.3 ± 4.4, respectively; P ≤ 0.05). Progesterone concentrations did not differ between groups. In Exp. 2, no differences were observed in terms of conceptus dimensions on Day 14 (n = 152). Progesterone concentrations were higher in lactating cows from Day 9 to 14 (P ≤ 0.05). In conclusion, this study provides evidence that at 60 days postpartum, the reproductive tract of lactating cows is compromised in its ability to support early embryo development compared with age-matched parous non-lactating cows; however, by 95 days postpartum there was no apparent difference in conceptus development, consistent with less metabolic stress as indicated by the metabolic profile. Funded by Science Foundation Ireland (SFI/07/SRC/B1156) and the Spanish Ministry of Science and Innovation (AGL2009-11810). VM was supported by an STSM award from the COST Action FAO7O2.


Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2858-2867 ◽  
Author(s):  
Myoungkun Jeoung ◽  
Sungeun Lee ◽  
Hee-kyung Hawng ◽  
Yong-Pil Cheon ◽  
Youn Kyung Jeong ◽  
...  

Endothelins were first identified as potent vasoactive peptides; however, diversity in the biological function of these hormones is now evident. We have identified a novel role for endothelins: a requirement for these peptides within the oviduct during fertilization and/or early embryo development. In vivo, treatment after ovulation with a dual endothelin receptor antagonist (tezosentan) decreased the number of two-cell embryos that could be collected from within the oviducts. In vitro fertilization experiments showed that gamete viability and their ability to fertilize were not affected by treatment with this antagonist, suggesting that the effect observed in vivo was mediated by the oviduct itself. Expression of mRNA for all three isoforms of the endothelins and both receptor subtypes was detectable within the oviduct. Expression of mRNA for endothelin-3 was regulated by gonadotropins in epithelial cells of the oviduct and increased specifically within the isthmus of this structure. Immunostaining revealed localization of both endothelin receptors A and B to the columnar epithelial cells within the oviduct, suggestive of a local role for endothelins in the regulation of epithelial function and ultimately oviductal secretions. A microarray analysis revealed three likely endothelin-regulated protein networks for future analysis: the TGFβ, IL-10, and CCAAT/enhancer-binding protein superfamilies. Overall, these results suggest a novel and requisite role for endothelins within the oviduct during fertilization and/or early embryo development.


Sign in / Sign up

Export Citation Format

Share Document