Synthesis of Escherichia coli branched-chain amino acid aminotransferase in vitro in a coupled transcription-translation system

1980 ◽  
Vol 105 (2) ◽  
pp. 441-448 ◽  
Author(s):  
Emanuel Goldman
Author(s):  
Kang Wang ◽  
Zhengyang Zhang ◽  
Hsiang-i Tsai ◽  
Yanfang Liu ◽  
Jie Gao ◽  
...  

Abstract Ferroptosis, a form of iron-dependent cell death driven by cellular metabolism and iron-dependent lipid peroxidation, has been implicated as a tumor-suppressor function for cancer therapy. Recent advance revealed that the sensitivity to ferroptosis is tightly linked to numerous biological processes, including metabolism of amino acid and the biosynthesis of glutathione. Here, by using a high-throughput CRISPR/Cas9-based genetic screen in HepG2 hepatocellular carcinoma cells to search for metabolic proteins inhibiting ferroptosis, we identified a branched-chain amino acid aminotransferase 2 (BCAT2) as a novel suppressor of ferroptosis. Mechanistically, ferroptosis inducers (erastin, sorafenib, and sulfasalazine) activated AMPK/SREBP1 signaling pathway through iron-dependent ferritinophagy, which in turn inhibited BCAT2 transcription. We further confirmed that BCAT2 as the key enzyme mediating the metabolism of sulfur amino acid, regulated intracellular glutamate level, whose activation by ectopic expression specifically antagonize system Xc– inhibition and protected liver and pancreatic cancer cells from ferroptosis in vitro and in vivo. On the contrary, direct inhibition of BCAT2 by RNA interference, or indirect inhibition by blocking system Xc– activity, triggers ferroptosis. Finally, our results demonstrate the synergistic effect of sorafenib and sulfasalazine in downregulating BCAT2 expression and dictating ferroptotic death, where BCAT2 can also be used to predict the responsiveness of cancer cells to ferroptosis-inducing therapies. Collectively, these findings identify a novel role of BCAT2 in ferroptosis, suggesting a potential therapeutic strategy for overcoming sorafenib resistance.


1988 ◽  
Vol 104 (5) ◽  
pp. 777-784 ◽  
Author(s):  
Katsura Inoue ◽  
Seiki Kuramitsu ◽  
Kenji Aki ◽  
Yasushi Watanabe ◽  
Toshio Takagi ◽  
...  

1995 ◽  
Vol 306 (1) ◽  
pp. 285-291 ◽  
Author(s):  
D L Mykles ◽  
M F Haire

The multicatalytic proteinase (MCP or proteasome) is a large proteolytic complex that contains at least five catalytic components: the trypsin-like, chymotrypsin-like, peptidylglutamyl-peptide hydrolase (PGPH), branched-chain-amino-acid-preferring (BrAAP) and small-neutral-amino-acid-preferring activities. We have shown that brief heating of the lobster muscle proteasome activates a proteolytic activity that degrades casein and myofibrillar proteins and is distinct from the trypsin-like, chymotrypsin-like and PGPH components. Here we identify the BrAAP activity as a catalytic component involved in the initial degradation of myofibrillar proteins in vitro. This conclusion is based on the following. (1) The BrAAP component was activated by heat-treatment, whereas the other four peptidase activities were not. (2) The BrAAP and proteolytic activities showed similar sensitivities to cations and protease inhibitors: both were inhibited by 3,4-dichloroisocoumarin, chymostatin, N-ethylmaleimide and Mg2+, but were not affected by leupeptin, phenylmethanesulphonyl fluoride or Li+. (3) The BrAAP activity was inhibited most strongly by casein substrates and troponin; conversely, the troponin-degrading activity was inhibited by the BrAAP substrate. Another significant finding was that incubation of the heat-activated MCP in the presence of chymostatin resulted in the limited cleavage of troponin-T2 (45 kDa) to two fragments of 41 and 42 kDa; this cleavage was completely suppressed by leupeptin. These results suggest that under certain conditions the trypsin-like component can cleave endogenous protein.


1984 ◽  
Vol 223 (3) ◽  
pp. 831-835 ◽  
Author(s):  
K Snell ◽  
D A Duff

Dichloroacetate (which activates pyruvate dehydrogenase) decreases the release of alanine, pyruvate and lactate in hemidiaphragm incubations with valine. Dichloroacetate interferes with alanine formation by diverting pyruvate into oxidative pathways, which not only limits pyruvate availability for direct transamination to form alanine but also indirectly affects branched-chain amino acid transamination by limiting 2-oxoglutarate regeneration from glutamate.


2020 ◽  
Author(s):  
Kang Wang ◽  
Zhengyang Zhang ◽  
Tsai Hsiang-i ◽  
Yanfang Liu ◽  
Ming Wang ◽  
...  

AbstractFerroptosis has been implicated as a tumor-suppressor function for cancer therapy. Recently the sensitivity to ferroptosis was tightly linked to numerous biological processes, including metabolism of amino acid. Here, using a high-throughput CRISPR/Cas9 based genetic screen in HepG2 cells to search for metabolic proteins inhibiting ferroptosis, we identified branched chain amino acid aminotransferase 2 (BCAT2) as a novel suppressor of ferroptosis. Mechanistically, ferroptosis inducers (erastin, sorafenib and sulfasalazine) activated AMPK/SREBP1 signaling pathway through ferritinophagy, which in turn inhibited BCAT2 transcription. We further confirmed that BCAT2 mediating the metabolism of sulfur amino acid, regulated intracellular glutamate level, whose activation by ectopic expression specifically antagonize system Xc– inhibition and protected liver and pancreatic cancer cells from ferroptosis in vitro and in vivo. Finally, our results demonstrate the synergistic effect of sorafenib and sulfasalazine in downregulating BCAT2 expression and dictating ferroptotic death, where BCAT2 can also be used to predict the responsiveness of cancer cells to ferroptosis-inducing therapies. Collectively, these findings identify a novel role of BCAT2 in ferroptosis, suggesting a potential therapeutic strategy for overcoming sorafenib resistance.


Sign in / Sign up

Export Citation Format

Share Document