The use of the fluorescence photobleaching recovery technique to study the self-assembly of tubulin

1985 ◽  
Vol 146 (1) ◽  
pp. 134-142 ◽  
Author(s):  
Tsutomu Arakawa ◽  
Carl Frieden
1983 ◽  
Vol 97 (1) ◽  
pp. 48-51 ◽  
Author(s):  
M Stya ◽  
D Axelrod

On aneurally cultured rat primary myotubes, 10% of the acetylcholine receptors (AChR) are found aggregated and immobilized in endogenous clusters. The remaining receptors are diffusely distributed over the cell membrane and the majority of these are free to diffuse in the plane of the membrane. This study correlates the mobility of AChR (as measured with the fluorescence photobleaching recovery technique, FPR) with the detergent extractability of this receptor. Gentle detergent extraction of the cells removes the lipid membrane and the soluble cytoplasmic proteins but leaves an intact cytoskeletal framework on the substrate. Two studies indicate a correlation between mobility and extractability: (a) mobility of diffusely distributed AChR decreases as myotubes age in culture; previous work showed that extractability of AChR decreases as myotubes age in culture (Prives, J., C. Christian, S. Penman, and K. Olden, 1980, In Tissue Culture in Neurobiology, E. Giacobini, A. Vernadakis, and A. Shahar, editors, Raven Press, New York, 35-52); (b) mobility of clustered AChR increases when cells are treated with metabolic inhibitors such as sodium azide (NaN3); extractability of clustered AChR also increases with this treatment. From these results we suggest the involvement of a cytoskeletal framework in the immobilization of AChR on the cell surface.


2010 ◽  
Vol 11 (2) ◽  
pp. 341-347 ◽  
Author(s):  
Nadia J. Edwin ◽  
Robert P. Hammer ◽  
Robin L. McCarley ◽  
Paul S. Russo

Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


Author(s):  
Xiaorong Zhu ◽  
Richard McVeigh ◽  
Bijan K. Ghosh

A mutant of Bacillus licheniformis 749/C, NM 105 exhibits some notable properties, e.g., arrest of alkaline phosphatase secretion and overexpression and hypersecretion of RS protein. Although RS is known to be widely distributed in many microbes, it is rarely found, with a few exceptions, in laboratory cultures of microorganisms. RS protein is a structural protein and has the unusual properties to form aggregate. This characteristic may have been responsible for the self assembly of RS into regular tetragonal structures. Another uncommon characteristic of RS is that enhanced synthesis and secretion which occurs when the cells cease to grow. Assembled RS protein with a tetragonal structure is not seen inside cells at any stage of cell growth including cells in the stationary phase of growth. Gel electrophoresis of the culture supernatant shows a very large amount of RS protein in the stationary culture of the B. licheniformis. It seems, Therefore, that the RS protein is cotranslationally secreted and self assembled on the envelope surface.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


2018 ◽  
Author(s):  
Claudia Contini ◽  
Russell Pearson ◽  
Linge Wang ◽  
Lea Messager ◽  
Jens Gaitzsch ◽  
...  

<div><div><div><p>We report the design of polymersomes using a bottom-up approach where the self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)–poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We study this process in detail using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and stop-flow ab- sorbance disclosing the molecular and supramolecular anatomy of each structure observed. We report a clear evolution from disk micelles to vesicle to high-genus vesicles where each passage is controlled by pH switch or temperature. We show that the process can be rationalised adapting membrane physics theories disclosing important scaling principles that allow the estimation of the vesiculation minimal radius as well as chain entanglement and coupling. This allows us to propose a new approach to generate nanoscale vesicles with genus from 0 to 70 which have been very elusive and difficult to control so far.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document