Suppression of male-specific cytochrome P450 2c and its mRNA by 3,4,5,3′,4′,5′-hexachlorobiphenyl in rat liver is not causally related to changes in serum testosterone

1989 ◽  
Vol 271 (2) ◽  
pp. 508-514 ◽  
Author(s):  
Heather N. Yeowell ◽  
David J. Waxman ◽  
Gerald A. LeBlanc ◽  
Patricia Linko ◽  
Joyce A. Goldstein
Author(s):  
Rafał Skowronek ◽  
Piotr Czekaj ◽  
Aleksandra Suszka-Świtek ◽  
Ewa Czech ◽  
Anna Wiaderkiewicz ◽  
...  

1990 ◽  
Vol 68 (6) ◽  
pp. 762-768 ◽  
Author(s):  
S. Bandiera

Research interest in the study of cytochromes P450 has recently been shifting to the characterization of "constitutively" expressed isozymes from that of the inducible forms. Several "constitutive" cytochrome P450 isozymes have been purified from rat liver including five immunochemically related proteins designated cytochromes P450f, P450g, P450h, P450i, and P450k. These hemoproteins have been identified as distinct isozymes on the basis of spectral, electrophoretic, and catalytic properties and NH2-terminal sequence analysis. Purification and immunoquantitation studies have indicated that these isozymes are expressed in a developmental as well as sex-related manner, and are relatively refractory to induction by xenobiotics. Cytochromes P450h and P450g are male-specific proteins, cytochrome P450i is a female-specific isozyme, while cytochromes P450f and P450k are present in both male and female adult rats. In addition, the expression of cytochrome P450g was shown to segregate into two phenotypes in outbred rats. Genetic studies utilizing inbred strains have indicated that the gene responsible for inheritance of high levels of cytochrome P450g is autosomal. Although considerable progress has been made in understanding the role of gonadal hormones and growth hormone in the hepatic regulation of cytochromes P450g, P450h, and P450i in particular, the physiological significance of the "constitutive" isozymes in the liver remains largely unresolved.Key words: cytochrome P450, regulation, constitutive, liver, sex differences.


1998 ◽  
Vol 72 (7) ◽  
pp. 387-394 ◽  
Author(s):  
Nobumitsu Hanioka ◽  
Hideto Jinno ◽  
Tetsuji Nishimura ◽  
Masanori Ando

2021 ◽  
Vol 22 (16) ◽  
pp. 8447
Author(s):  
Przemysław J. Danek ◽  
Wojciech Kuban ◽  
Władysława A. Daniel

In order to achieve a desired therapeutic effect in schizophrenia patients and to maintain their mental wellbeing, pharmacological therapy needs to be continued for a long time, usually from the onset of symptoms and for the rest of the patients’ lives. The aim of our present research is to find out the in vivo effect of chronic treatment with atypical neuroleptic iloperidone on the expression and activity of cytochrome P450 (CYP) in rat liver. Male Wistar rats received a once-daily intraperitoneal injection of iloperidone (1 mg/kg) for a period of two weeks. Twenty-four hours after the last dose, livers were excised to study cytochrome P450 expression (mRNA and protein) and activity, pituitaries were isolated to determine growth hormone-releasing hormone (GHRH), and blood was collected for measuring serum concentrations of hormones and interleukin. The results showed a broad spectrum of changes in the expression and activity of liver CYP enzymes, which are important for drug metabolism (CYP1A, CYP2B, CYP2C, and CYP3A) and xenobiotic toxicity (CYP2E1). Iloperidone decreased the expression and activity of CYP1A2, CP2B1/2, CYP2C11, and CYP3A1/2 enzymes but increased that of CYP2E1. The CYP2C6 enzyme remained unchanged. At the same time, the level of GHRH, GH, and corticosterone decreased while that of T3 increased, with no changes in IL-2 and IL-6. The presented results indicate neuroendocrine regulation of the investigated CYP enzymes during chronic iloperidone treatment and suggest a possibility of pharmacokinetic/metabolic interactions produced by the neuroleptic during prolonged combined treatment with drugs that are substrates of iloperidone-affected CYP enzymes.


1998 ◽  
Vol 39 (6) ◽  
pp. 1210-1219 ◽  
Author(s):  
Fadi Adas ◽  
François Berthou ◽  
Daniel Picart ◽  
Patrick Lozac'h ◽  
Françoise Beaugé ◽  
...  

2011 ◽  
Vol 40 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Meena R. Sharma ◽  
Wojciech Dworakowski ◽  
Bernard H. Shapiro

Adult male and female rat hepatocytes were individually transplanted into the spleens of adult male and female rats. The recipients were euthanized at either eight, sixteen, thirty, or forty-five weeks following transplantation, at which time hepatic and splenic levels of liver-specific rat albumin mRNA as well as sex-dependent transcript levels of CYP2C11, -2C12, -2C7, -2A1, and -3A2—which accounts for > 60% of the total concentration of hepatic constituent cytochrome P450—were determined. Whereas the pre-infused hepatocytes expressed their expected cytochrome P450 sexual dimorphisms (female-specific CYP2C12, male-specific CYP3A2, and female-predominant CYP2A1), their post-transplantational competence now reflected the sexual dimorphisms of the recipient (as observed in the host’s liver), which supports the concept that the sex-dependent growth hormone circulating profiles are the determinants regulating the expression levels of hepatic cytochrome P450. Also expressed at normal concentrations in the pre-infused hepatocytes, male-specific CYP2C11 and female-predominant CYP2C7 were inexplicably undetectable in the spleens of both recipient males and females, regardless of the sex of the donor hepatocytes, almost one year after transplantation.


Sign in / Sign up

Export Citation Format

Share Document