Adaptive changes in membrane conductance in response to changes in specific growth rate in continuous cultures of phototrophic bacteria under conditions of energy sufficiency

1987 ◽  
Vol 891 (3) ◽  
pp. 242-255 ◽  
Author(s):  
M.A. Taylor ◽  
J.B. Jackson
2014 ◽  
Vol 60 (9) ◽  
pp. 605-612
Author(s):  
Lygia Fátima da Mata Corrêa ◽  
Frederico José Vieira Passos ◽  
Marlene Isabel Vargas Viloria ◽  
Olindo Assis Martins Filho ◽  
Andréa Teixeira de Carvalho ◽  
...  

The effects of aging on the specific growth rate of Kluyveromyces lactis cultures, as a function of (NH4)2SO4 concentration, were evaluated. The growth kinetic parameters maximum specific growth rate and saturation constant for (NH4)2SO4 were calculated to be 0.44 h−1 and 0.15 mmol·L−1, respectively. Batch cultures were allowed to age for 16 days without influence of cell density or starvation. The specific growth rates of these cultures were determined each day and decreased as the population aged at different nitrogen concentrations. Aging signals (N-acetylglucosamine content of the cell wall, cell dimensions, and apoptosis markers) were measured. Apoptosis markers were detected after 5 days at limiting (NH4)2SO4 concentrations (0.57, 3.80, and 7.60 mmol·L−1) but only after 8 days at a nonlimiting (NH4)2SO4 concentration (38.0 mmol·L−1). Similarly, continuous cultures of K. lactis performed under nitrogen limitation and, at lower dilution rates, accumulated cells exhibiting aging signals. The results demonstrate that aging affects growth rate and raise the question of whether nitrogen limitation accelerates aging. Because aging is correlated with growth rate, and each dilution rate of the continuous cultures tends to select and accumulate cells with a respective age, cultures growing at lower growth rates can be useful to investigate yeast physiological responses, including aging.


1998 ◽  
Vol 64 (8) ◽  
pp. 2970-2976 ◽  
Author(s):  
Guadalupe Piñar ◽  
Karin Kovárová ◽  
Thomas Egli ◽  
Juan L. Ramos

ABSTRACT The nitrate-tolerant organism Klebsiella oxytoca CECT 4460 tolerates nitrate at concentrations up to 1 M and is used to treat wastewater with high nitrate loads in industrial wastewater treatment plants. We studied the influence of the C source (glycerol or sucrose or both) on the growth rate and the efficiency of nitrate removal under laboratory conditions. With sucrose as the sole C source the maximum specific growth rate was 0.3 h−1, whereas with glycerol it was 0.45 h−1. In batch cultures K. oxytocacells grown on sucrose or glycerol were able to immediately use sucrose as a sole C source, suggesting that sucrose uptake and metabolism were constitutive. In contrast, glycerol uptake occurred preferentially in glycerol-grown cells. Independent of the preculture conditions, when sucrose and glycerol were added simultaneously to batch cultures, the sucrose was used first, and once the supply of sucrose was exhausted, the glycerol was consumed. Utilization of nitrate as an N source occurred without nitrite or ammonium accumulation when glycerol was used, but nitrite accumulated when sucrose was used. In chemostat cultures K. oxytoca CECT 4460 efficiently removed nitrate without accumulation of nitrate or ammonium when sucrose, glycerol, or mixtures of these two C sources were used. The growth yields and the efficiencies of C and N utilization were determined at different growth rates in chemostat cultures. Regardless of the C source, yield carbon (YC) ranged between 1.3 and 1.0 g (dry weight) per g of sucrose C or glycerol C consumed. Regardless of the specific growth rate and the C source, yield nitrogen (YN) ranged from 17.2 to 12.5 g (dry weight) per g of nitrate N consumed. In contrast to batch cultures, in continuous cultures glycerol and sucrose were utilized simultaneously, although the specific rate of sucrose consumption was higher than the specific rate of glycerol consumption. In continuous cultures double-nutrient-limited growth appeared with respect to the C/N ratio of the feed medium and the dilution rate, so that for a C/N ratio between 10 and 30 and a growth rate of 0.1 h−1 the process led to simultaneous and efficient removal of the C and N sources used. At a growth rate of 0.2 h−1the zone of double limitation was between 8 and 11. This suggests that the regimen of double limitation is influenced by the C/N ratio and the growth rate. The results of these experiments were validated by pulse assays.


Aquaculture ◽  
2008 ◽  
Vol 274 (1) ◽  
pp. 87-95 ◽  
Author(s):  
S. Millot ◽  
M.-L. Bégout ◽  
J. Person-Le Ruyet ◽  
G. Breuil ◽  
C. Di-Poï ◽  
...  

2010 ◽  
Vol 45 (11) ◽  
pp. 1800-1807 ◽  
Author(s):  
S. Chenikher ◽  
J.S. Guez ◽  
F. Coutte ◽  
M. Pekpe ◽  
P. Jacques ◽  
...  

2012 ◽  
Vol 48 (2) ◽  
pp. 382-386 ◽  
Author(s):  
Juan Aguirre ◽  
Mª Rosa Rodríguez ◽  
Rodrigo González ◽  
Gonzalo García de Fernando

Sign in / Sign up

Export Citation Format

Share Document