The outer mitochondrial membrane channel, VDAC, is modulated by a protein localized in the intermembrane space

1993 ◽  
Vol 1144 (3) ◽  
pp. 396-402 ◽  
Author(s):  
Marcia J. Holden ◽  
Marco Colombini
2014 ◽  
Vol 25 (25) ◽  
pp. 3999-4009 ◽  
Author(s):  
Agnieszka Gornicka ◽  
Piotr Bragoszewski ◽  
Piotr Chroscicki ◽  
Lena-Sophie Wenz ◽  
Christian Schulz ◽  
...  

Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex.


2004 ◽  
Vol 279 (44) ◽  
pp. 45701-45707 ◽  
Author(s):  
Masatoshi Esaki ◽  
Hidaka Shimizu ◽  
Tomoko Ono ◽  
Hayashi Yamamoto ◽  
Takashi Kanamori ◽  
...  

Protein translocation across the outer mitochondrial membrane is mediated by the translocator called the TOM (translocase of the outer mitochondrial membrane) complex. The TOM complex possesses two presequence binding sites on the cytosolic side (thecissite) and on the intermembrane space side (thetranssite). Here we analyzed the requirement of presequence elements and subunits of the TOM complex for presequence binding to thecisandtranssites of the TOM complex. The N-terminal 14 residues of the presequence of subunit 9 of F0-ATPase are required for binding to thetranssite. The interaction between the presequence and thecissite is not sufficient to anchor the precursor protein to the TOM complex. Tom7 constitutes or is close to thetranssite and has overlapping functions with the C-terminal intermembrane space domain of Tom22 in the mitochondrial protein import.


2003 ◽  
Vol 39 ◽  
pp. 41-51 ◽  
Author(s):  
Philippe Parone ◽  
Muriel Priault ◽  
Dominic James ◽  
Steven F Nothwehr ◽  
Jean-Claude Martinou

Mitochondria play a central role in apoptosis triggered by many stimuli. They integrate death signals through Bcl-2 family members and co-ordinate caspase activation through the release of apoptogenic factors that are normally sequestered in the mitochondrial intermembrane space. The release of these proteins is the result of the outer mitochondrial membrane becoming permeable. In addition, mitochondria can initiate apoptosis through the production of reactive oxygen species.


2020 ◽  
Vol 402 (1) ◽  
pp. 73-88
Author(s):  
Simone Wanderoy ◽  
J. Tabitha Hees ◽  
Ramona Klesse ◽  
Frank Edlich ◽  
Angelika B. Harbauer

AbstractMitochondria are key players of cellular metabolism, Ca2+ homeostasis, and apoptosis. The functionality of mitochondria is tightly regulated, and dysfunctional mitochondria are removed via mitophagy, a specialized form of autophagy that is compromised in hereditary forms of Parkinson’s disease. Through mitophagy, cells are able to cope with mitochondrial stress until the damage becomes too great, which leads to the activation of pro-apoptotic BCL-2 family proteins located on the outer mitochondrial membrane. Active pro-apoptotic BCL-2 proteins facilitate the release of cytochrome c from the mitochondrial intermembrane space (IMS) into the cytosol, committing the cell to apoptosis by activating a cascade of cysteinyl-aspartate specific proteases (caspases). We are only beginning to understand how the choice between mitophagy and the activation of caspases is determined on the mitochondrial surface. Intriguingly in neurons, caspase activation also plays a non-apoptotic role in synaptic plasticity. Here we review the current knowledge on the interplay between mitophagy and caspase activation with a special focus on the central nervous system.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yilin Kang ◽  
Michael James Baker ◽  
Michael Liem ◽  
Jade Louber ◽  
Matthew McKenzie ◽  
...  

The TIM22 complex mediates the import of hydrophobic carrier proteins into the mitochondrial inner membrane. While the TIM22 machinery has been well characterised in yeast, the human complex remains poorly characterised. Here, we identify Tim29 (C19orf52) as a novel, metazoan-specific subunit of the human TIM22 complex. The protein is integrated into the mitochondrial inner membrane with it’s C-terminus exposed to the intermembrane space. Tim29 is required for the stability of the TIM22 complex and functions in the assembly of hTim22. Furthermore, Tim29 contacts the Translocase of the Outer Mitochondrial Membrane, TOM complex, enabling a mechanism for transport of hydrophobic carrier substrates across the aqueous intermembrane space. Identification of Tim29 highlights the significance of analysing mitochondrial import systems across phylogenetic boundaries, which can reveal novel components and mechanisms in higher organisms.


2007 ◽  
Vol 282 (38) ◽  
pp. 27633-27639 ◽  
Author(s):  
Martin Ott ◽  
Erik Norberg ◽  
Katharina M. Walter ◽  
Patrick Schreiner ◽  
Christian Kemper ◽  
...  

Cytochrome c release from mitochondria is a key event in apoptosis signaling that is regulated by Bcl-2 family proteins. Cleavage of the BH3-only protein Bid by multiple proteases leads to the formation of truncated Bid (tBid), which, in turn, promotes the oligomerization/insertion of Bax into the mitochondrial outer membrane and the resultant release of proteins residing in the intermembrane space. Bax, a monomeric protein in the cytosol, is targeted by a yet unknown mechanism to the mitochondria. Several hypotheses have been put forward to explain this targeting specificity. Using mitochondria isolated from different mutants of the yeast Saccharomyces cerevisiae and recombinant proteins, we have now investigated components of the mitochondrial outer membrane that might be required for tBid/Bax-induced cytochrome c release. Here, we show that the protein translocase of the outer mitochondrial membrane is required for Bax insertion and cytochrome c release.


Sign in / Sign up

Export Citation Format

Share Document