Essential adaptation of the calcium influx assay into liposomes with entrapped arsenazo III for studies on the possible calcium translocating properties of acidic phospholipids

1985 ◽  
Vol 816 (2) ◽  
pp. 418-422 ◽  
Author(s):  
Erik B. Smaal ◽  
Jacqueline G. Mandersloot ◽  
Ben de Kruijff ◽  
Johannes de Gier
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hongqiu Guo ◽  
L. Miguel Camargo ◽  
Fred Yeboah ◽  
Mary Ellen Digan ◽  
Honglin Niu ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2570
Author(s):  
Heiko Henning ◽  
Anne-Marie Luther ◽  
Dagmar Waberski

Retained cytoplasmic droplets (CD) are the most frequent sperm abnormality in boar semen. A high incidence of CD is associated with subfertility, but the underlaying reasons are not well understood. The storage of extended semen might augment the adverse effects of CD on essential steps towards fertilization, such as capacitation. The aim of this study was to examine whether the enhanced presence of CD in boar semen influences sperm’s response to the capacitation stimulus bicarbonate during long-term semen storage. Extended semen samples (n = 78) from 13 artificial insemination centers were analyzed using a flow cytometric calcium influx assay. Samples with >15% of CD showed a reduced specific response to bicarbonate and a higher non-specific destabilization after storage for 96 h and subsequent incubation at 38 °C in three variants of Tyrode`s medium (p < 0.05). The size of the bicarbonate-responsive sperm population was inversely correlated with the presence of CD-bearing sperm (r = −0.61, p < 0.01). Samples with ≤15% and samples with >15% of CD did not differ in motility or viability and acrosome integrity during semen storage. In conclusion, incomplete epididymal sperm maturation impairs the in vitro capacitation ability and promotes sperm destabilization in stored boar semen.


1986 ◽  
Vol 88 (2) ◽  
pp. 149-165 ◽  
Author(s):  
S R Bolsover

N1E-115 mouse neuroblastoma cells were injected with the calcium indicator dye arsenazo III. Optical absorbance changes during voltage-clamp depolarization were used to examine the properties of the two calcium currents present in these cells. The rapidly inactivating calcium current (Moolenar and Spector, 1979b, Journal of Physiology, 292:307-323) inactivates by a voltage-dependent mechanism. The slowly inactivating calcium current is dominant in raising intracellular calcium during depolarizations to greater than -20 mV. Lowering the extracellular calcium concentration affects the two calcium currents unequally, with the slowly inactivating current being reduced more. Intracellular calcium falls very slowly (tau greater than 1 min) after a depolarization. The rapidly inactivating calcium current is responsible for a calcium action potential under physiological conditions. In contrast, it is unlikely that the slowly inactivating calcium current has an important electrical role. Rather, its function may be to add a further increment of calcium influx over and above the calcium influx through the rapidly inactivating calcium channels.


1980 ◽  
Vol 75 (4) ◽  
pp. 403-426 ◽  
Author(s):  
Z Ahmed ◽  
J A Connor

Simultaneous measurements of electrical activity and light absorbance have been made on nerve cell bodies from Archidoris monteryensis injected with indicator dyes. pH indicators, phenol red and bromocresol purple, and arsenazo III, which under normal conditions is primarily a calcium indicator have been employed. Voltage clamp pulses which induced calcium influx caused an absorbance decrease of the pH dyes indicating an internal acidification. The onset of the pH drop lagged the onset of Ca2+ influx by 200-400 ms, and pH continued to decrease for several seconds after pulse termination which shut off Ca2+ influx. Trains of action potentials also produced an internal pH decrease. Recovery of the pH change required periods greater than 10 min. The magnitude of the pH change was largely unaffected by external pH in the range 6.8-8.4. The voltage dependence of the internal p/ change was similar to the voltage dependence of calcium influx determined by arsenazo III, and removal of calcium from the bathing saline eliminated the pH signal. In neurons injected with EGTA (1-5 mM), the activity-induced internal Ca2+ changes were reduced or eliminated, but the internal pH drop was increased severalfold in magnitude. After the injection of EGTA, voltage clamp pulses produced a decrease in arsenazo III absorbance instead of the normal increase. Under these conditions the dye was responding primarily to changes in internal pH. Injection of H+ caused a rise in internal free calcium. The pH buffering capacity of the neurons was measured using three different techniques: H+ injection, depressing intrinsic pH changes with a pH buffer, and a method employing the EGTA-calcium reaction. The first two methods gave similar measurements: 4-9 meq/unit pH per liter for pleural ganglion cells and 13-26 meq/unit pH per liter for pedal ganglion cells. The EGTA method gave significantly higher values (20-60 meq/unit pH per liter) and showed no difference between pleural and pedal neurons.


1995 ◽  
Vol 74 (05) ◽  
pp. 1323-1328 ◽  
Author(s):  
Dominique Lasne ◽  
José Donato ◽  
Hervé Falet ◽  
Francine Rendu

SummarySynthetic peptides (TRAP or Thrombin Receptor Activating Peptide) corresponding to at least the first five aminoacids of the new N-terminal tail generated after thrombin proteolysis of its receptor are effective to mimic thrombin. We have studied two different TRAPs (SFLLR, and SFLLRN) in their effectiveness to induce the different platelet responses in comparison with thrombin. Using Indo-1/AM- labelled platelets, the maximum rise in cytoplasmic ionized calcium was lower with TRAPs than with thrombin. At threshold concentrations allowing maximal aggregation (50 μM SFLLR, 5 μM SFLLRN and 1 nM thrombin) the TRAPs-induced release reaction was about the same level as with thrombin, except when external calcium was removed by addition of 1 mM EDTA. In these conditions, the dense granule release induced by TRAPs was reduced by over 60%, that of lysosome release by 75%, compared to only 15% of reduction in the presence of thrombin. Thus calcium influx was more important for TRAPs-induced release than for thrombin-induced release. At strong concentrations giving maximal aggregation and release in the absence of secondary mediators (by pretreatment with ADP scavengers plus aspirin), SFLLRN mobilized less calcium, with a fast return towards the basal level and induced smaller lysosome release than did thrombin. The results further demonstrate the essential role of external calcium in triggering sustained and full platelet responses, and emphasize the major difference between TRAP and thrombin in mobilizing [Ca2+]j. Thus, apart from the proteolysis of the seven transmembrane receptor, another thrombin binding site or thrombin receptor interaction is required to obtain full and complete responses.


1993 ◽  
Vol 69 (05) ◽  
pp. 496-502 ◽  
Author(s):  
Yasuo Ikeda ◽  
Makoto Handa ◽  
Tetsuji Kamata ◽  
Koichi Kawano ◽  
Yohko Kawai ◽  
...  

SummaryWe found that the binding of multimeric vWF to GP Ib under a shear force of 108 dynes/cm2 resulted in the transmembrane flux of Ca2+ ions with a two-to three-fold increase in their intracellular concentration ([Ca2+]i). The blockage of this event, obtained by inhibiting the vWF-GP Ib interaction, suppressed aggregation. In contrast, the blockage of vWF binding to GP IIb-IIIa, as well as the prevention of activation caused by increased intracellular cAMP levels, inhibited aggregation but had no significant effect on [Ca2+]i increase. A monomeric recombinant fragment of vWF containing the GP Ib-binding domain of the molecule (residues 445-733) prevented all effects mediated by multimeric vWF but, by itself, failed to support the increase in [Ca2+]i and aggregation. These results suggest that the binding of multimeric vWF to GP Ib initiates platelets aggregation induced by high shear stress by mediating a transmembrane flux of Ca2+ ions, perhaps through a receptor-dependent calcium channel. The increase in [Ca2+]i may act as an intracellular message and cause the activation of GP IIb-IIIa; the latter receptor then binds vWF and mediates irreversible aggregation.


1996 ◽  
Vol 75 (05) ◽  
pp. 796-800 ◽  
Author(s):  
Sanne Valentin ◽  
Inger Schousboe

SummaryIn the present study, the interaction between tissue factor pathway inhibitor (TFPI) and phospholipids has been characterized using a microtitre plate assay. TFPI was shown to bind calcium-independently to an acidic phospholipid surface composed of phosphatidylserine, but not a surface composed of the neutral phosphatidylcholine. The interaction was demonstrated to be dependent on the presence of the TFPI C-terminus. The presence of heparin (1 U/ml, unfractionated) was able to significantly reduce the binding of TFPI to phospholipid. The interaction of TFPI with phosphatidylserine was significantly decreased in the presence of calcium, but this was counteracted, and even enhanced, following complex formation of TFPI with factor Xa prior to incubation with the phospholipid surface. Moreover, a TFPI variant, not containing the third Kunitz domain and the C-terminus, was unable to bind to phospholipid. However, following the formation of a TFPI/factor Xa-complex this TFPI variant was capable of interacting with the phospholipid surface. This indicates that the role of factor Xa as a TFPI cofactor, at least in part, is to mediate the binding of TFPI to the phospholipid surface.


Sign in / Sign up

Export Citation Format

Share Document