Solubility of hydrophobic surfactant proteins in organic solvent/water mixtures. Structural studies on SP-B and SP-C in aqueous organic solvents and lipids

Author(s):  
Jesús Pérez-Gil ◽  
Antonio Cruz ◽  
Cristina Casals
Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 559
Author(s):  
Yuki Suga ◽  
Ryosuke Takagi ◽  
Hideto Matsuyama

Recently, the demand for the recovery of valuable solutes from organic solvents/water mixtures has increased in various fields. Furthermore, due to the abundance of heat-sensitive valuable solutes, the demand for non-heated concentration technologies has increased. In this study, the direct contact membrane distillation (DCMD) using hydrophobic polyvinylidene difluoride (PVDF) hollow fiber membranes was investigated to confirm the possibility of recovering valuable solutes from organic solvents/water mixtures as a non-heated process. The DCMD with 1000 ppm NaCl aqueous solution achieved 0.8 kg/m2·h of vapor flux and >99.9% of NaCl retention, even at feed and coolant temperatures of 25 and 10 °C, respectively. Furthermore, when DCMD was conducted under various conditions, including feed temperatures of 25, 35 and 45 °C, and organic solvent concentration of 15, 30 and 50 wt%, using ethanol/water and acetonitrile/water mixtures containing 1000 ppm NaCl. A surfactant was also used as a valuable solute, in addition to NaCl. As a result, it was found that the total vapor flux increased with increasing temperature and concentration of organic solvents, as the partial vapor pressure of the organic solvents increased. Additionally, no solute leaked under any condition, even when the surfactant was used as a valuable solute.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 722
Author(s):  
Shuji Yomo

In this study, a 2-pack isocyanate curing waterborne paint (without organic solvents) encapsulating dibutyltin dilaurate (hereinafter, DBTL) in nonionic surfactant micelles with an hydrophilic–lipophilic balance of 13–14 in advance releases DBTL when the micelles are collapsed at 80 °C or higher, whereby the curing progresses rapidly. On the other hand, the viscosity levels of the paint before and after being left at 40 °C for 1 h are almost the same. Organic solvents are mandatory for waterborne paints to provide paint and film properties, but they might collapse the micelles when they are formulated in the paint. In this study, we investigate whether the abovementioned paint containing organic solvents can develop switching functionality in terms of maintaining the storage stability at 40 °C and expressing a catalytic function at 80 °C to progress the curing. As a result, we find that if the solubility of the organic solvent in water at 20 °C is at least 10 g/100 mL and the boiling point is ≤200 °C, both curing and storage stability can be achieved.


1981 ◽  
Vol 59 (19) ◽  
pp. 2921-2925 ◽  
Author(s):  
J. Bryan Jones ◽  
Diana H. Pliura

The esterolytic activity of native chymotrypsin (CT) immobilized on ionically neutral porous glass beads has been studied in the presence of up to 20% (v/v) of the organic solvents methanol, ethanol, 2-propanol, tert-butyl alcohol, dioxane, and DMSO. In marked contrast to the variations observed with native CT, inhibition of CT immobilized on glass (CT–glass) was independent of the nature of the organic solvent. The overall activity, as indicated by kc(app)/km(app), decreased by 35–50% as the concentration of all solvents surveyed was increased up to 20%. In general, high organic solvent concentration accelerated the rate of protein release from the insoluble catalyst. For practical applications in aqueous organic solvents CT–glass conjugates are inferior to those of the enzyme attached to Sephadex.


2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1785-1793
Author(s):  
Dongli Ma ◽  
Yuanyuan Chen ◽  
Yong Lai ◽  
Zanpei Zhang ◽  
Ximei Li ◽  
...  

Nerium indicum is an ornamental plant that is widely distributed in tropical and subtropical regions wordwide. It has toxic and medicinal properties which is closely related to the bioactive ingredients contained in Nerium indicum. In our research, the leaves of Nerium indicum was used as raw materials to study the chemical constituents and their effects. The chemical constituents of the leaves were analyzed by FT-IR and GC-MS with alcohol, benzene and acetone as organic solvents. A total of 73 compounds were obtained by acetone organic solvent, 25 compounds were extracted from benzene and 146 compounds were obtained from alcohol. Rich bioactive and bioenergy components were found in all three kinds of extract, suggesting that Nerium indicum leaves are of great significance for the diverse resourcing of bio-utilization including biomedicine, bioenergy, aroma, food additives.


Sign in / Sign up

Export Citation Format

Share Document