In vitro synthesis of a brain-specific protein (S-100) by free and membrane-bound polysomes

Author(s):  
Paola Amaldi ◽  
Graziella Rusca ◽  
Pietro Calissano
Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 173-179
Author(s):  
Yolanda Espinosa-Parrilla ◽  
Tomio Yamazaki ◽  
Nùria Sala ◽  
Björn Dahlbäck ◽  
Pablo Garcı́a de Frutos

To elucidate the molecular background for the heterogeneity in protein S plasma concentrations observed in protein S deficient individuals, the in vitro synthesis of recombinant protein S missense mutants was investigated. Six different naturally occurring mutations identified in the protein S gene (PROS1) of thrombosis patients were reproduced in protein S cDNA by site directed mutagenesis. Two mutants, G441C and Y444C (group A), were associated with low total plasma concentration of protein S. Modestly low protein S was found in families with R520G and P626L (group B) mutants. T57S and I518M (group C), which was associated with marginally low protein S, did not segregate with protein S deficiency in the respective families, raising doubts as to whether they were causative mutations or rare neutral variants. The 6 protein S mutants were transiently expressed in COS 1 cells. The Y444C mutant showed the lowest level of secretion (2.5%) followed by the G441C mutant (40%). Group B demonstrated around 50% reduction in secretion, whereas group C mutants showed normal secretion. Pulse-chase experiments demonstrated impaired protein S processing with intracellular degradation and decreased secretion into the culture media of group A and B mutants. Interestingly, there was a good correlation between in vitro secretion and the concentration of free protein S in the plasma of heterozygous carriers. These results demonstrate impaired protein S secretion to be an important mechanism underlying hereditary protein S deficiency and that variations in protein secretion is a major determinant of the phenotypic heterogeneity observed in protein S deficiency. (Blood. 2000;95:173-179)


1988 ◽  
Vol 106 (2) ◽  
pp. 289-301 ◽  
Author(s):  
RR Klein ◽  
HS Mason ◽  
JE Mullet

We have previously observed (Klein, R. R., and J. E. Mullet, 1986, J. Biol. Chem. 261:11138-11145) that translation of two 65-70-kD chlorophyll a-apoproteins of Photosystem I (gene products of psaA and psaB) and a 32-kD quinone-binding protein of Photosystem II (gene product of psbA) was not detected in plastids of dark-grown barley seedlings even though transcripts for these proteins were present. In the present study it was found that nearly all of the psaA-psaB transcripts in plastids of dark-grown plants were associated with membrane-bound polysomes. Membrane-associated polysomes from plastids of dark-grown plants synthesized the 65-70-kD chlorophyll a-apoproteins at low levels when added to a homologous in vitro translation extract capable of translation elongation. However, when etioplast membranes were disrupted with detergent, in vitro synthesis of the 65-70-kD chlorophyll a-apoproteins increased to levels observed with polysomes of plastids from illuminated plants. These results suggest that synthesis of the chlorophyll a-apoproteins of Photosystem I is arrested on membrane-bound polysomes at the level of polypeptide chain elongation. In addition to the selective activation of chlorophyll a-apoprotein translation, illumination also caused an increase in chloroplast polysomes (membrane-associated and stromal) and induced a recruitment of psbA and rbcL transcripts into chloroplast polysomes. These results indicate that in conjunction with the selective activation of chlorophyll a-apoprotein elongation, illumination also caused a general stimulation of chloroplast translation initiation.


1997 ◽  
Vol 11 (1) ◽  
pp. 33-42 ◽  
Author(s):  
R.P. Ellen ◽  
G. Lépine ◽  
P.-M. Nghiem

Adhesion to adsorbed pellicles and interspecies co-adhesion to form plaque biofilms involve selective interactions of bacterial adhesins with specific receptors. Our laboratory has devised in vitro assays for co-adhesion between Actinomyces naeslundii and Streptococcus oralis or Porphyromonas gingivalis on saliva-coated mineral and hexadecane droplet substrata. P. gingivalis structures significant for co-adhesion with A. naeslundii include surface vesicles and fimbriae. A family of arginine-specific cysteine proteinases in vesicles may be involved in adherence to bacteria, to host cells, and to matrix proteins. New research from several laboratories has found that such proteinases are processed from genes encoding polyproteins containing both proteinase and hemagglutinin domains. In addition to enzyme-substrate recognition, bacterial adhesion is often determined by specific protein-peptide and lectin-carbohydrate recognition. A. naeslundii - salivary proline-rich protein, S. gordonii - salivary a-amylase, and Treponema denticola - matrix protein recognition are examples of the former. Co-adhesion of A. naeslundii and S. oralis is an example of the latter. Lactose can selectively desorb A. naeslundii cells from mixed biofilms with S. oralis, a demonstration of the significance of specificity. Although non-specific forces are probably secondary to stereochemical fit in determining the selective range of surfaces that bacteria have evolved to recognize and bind, they probably help stabilize non-covalent bonds within aligned, complementary domains.


1987 ◽  
Vol 145 (2) ◽  
pp. 673-679 ◽  
Author(s):  
Hans-Jürgen Fülle ◽  
Dieter Höer ◽  
Waltraud Lache ◽  
Walter Rosenthal ◽  
Günter Schultz ◽  
...  

2018 ◽  
pp. 67-72
Author(s):  
V. M. Makhov ◽  
A. A. Balakhonov ◽  
M. A. Isaikina ◽  
Yu. A. Doronina

The article shows the dynamics of evaluation of prognostic factors of irritable bowel syndrome. Evolution of the views indicates an increasing evaluation of inflammation and the role of markers of inflammation of cytokines, especially alpha-TNF in clinical manifestations. The rationale for using a complex drug based on affinity purified release-active antibodies to alpha-TNF, to the brain-specific protein S-100 and histamine-colourant is presented.


Sign in / Sign up

Export Citation Format

Share Document