Structural differences between insulin and somatomedin-C/insulin-like growth factor-1 receptors revealed by autoantibodies to the insulin receptor

1982 ◽  
Vol 109 (2) ◽  
pp. 463-470 ◽  
Author(s):  
Helen A. Jonas ◽  
Robert C. Baxter ◽  
Len C. Harrison
1986 ◽  
Vol 261 (35) ◽  
pp. 16727-16731
Author(s):  
Y Fujita-Yamaguchi ◽  
T R LeBon ◽  
M Tsubokawa ◽  
W Henzel ◽  
S Kathuria ◽  
...  

2015 ◽  
Vol 119 (6) ◽  
pp. 663-669 ◽  
Author(s):  
Yi-Yuan Lin ◽  
Shin-Da Lee ◽  
Chia-Ting Su ◽  
Tsung-Lin Cheng ◽  
Ai-Lun Yang

Dysfunction of insulin and insulin-like growth factor-1 (IGF-1) is associated with the pathophysiology of hypertension. The influence of long-term exercise on vascular dysfunction caused by hypertension remains unclear. We investigated whether long-term treadmill training improved insulin- and IGF-1-mediated vasorelaxation in hypertensive rats. Eight-week-old male spontaneously hypertensive rats (SHR) were randomly divided into sedentary and exercise (SHR-EX) groups. The SHR-EX group was trained on a treadmill for 60 min/day, 5 days/wk, for 8 wk. Wistar-Kyoto rats (WKY) were used as the normal control group. After training, aortic insulin- and IGF-1-mediated vasorelaxation was evaluated in organ baths. Additionally, the roles of phosphatidylinositol 3-kinase (PI3K), nitric oxide synthase (NOS), and aortic protein expression were examined in the three groups. Compared with sedentary SHR and WKY groups, insulin- and IGF-1-mediated vasorelaxation was significantly enhanced to a nearly normal level in the SHR-EX group. After endothelial denudation, blunted and comparable vasorelaxation was found among the three groups. Pretreatment with selective PI3K and NOS inhibitors attenuated insulin- and IGF-1-mediated vasorelaxation, and no significant difference was found among the three groups after the pretreatment. The aortic protein levels of the insulin receptor (IR), IGF-1 receptor (IGF-1R), insulin receptor substrate-1 (IRS-1), and endothelial NOS (eNOS) were also significantly increased in the SHR-EX group compared with the other two groups. These results suggested that treadmill training elicited the amelioration of endothelium-dependent insulin/IGF-1-mediated vasorelaxation partly via the increased activation of PI3K and NOS, as well as the enhancement of protein levels of IR, IGF-1R, IRS-1, and eNOS, in hypertension.


1991 ◽  
Vol 19 (01) ◽  
pp. 61-64 ◽  
Author(s):  
Satoshi Usuki

The effect of herbal components of Tokishakuyakusan on somatomedin C/insulin-like growth factor I (IGF-1) level in medium from rat corpora lutea incubated in vitro was examined. Hoelen + peony root + Japanese angelica root, hoelen + peony root, hoelen + Japanese angelica root or peony root + Japanese angelica root decreased the IGF-1 level. The data suggest that constituent herbal components of Tokishakuyakusan regulate the IGF-1 level by rat corpora lutea.


2000 ◽  
Vol 20 (11) ◽  
pp. 3896-3905 ◽  
Author(s):  
Payal Soni ◽  
Montaha Lakkis ◽  
Matthew N. Poy ◽  
Mats A. Fernström ◽  
Sonia M. Najjar

ABSTRACT pp120 (Ceacam 1) undergoes ligand-stimulated phosphorylation by the insulin receptor, but not by the insulin-like growth factor 1 receptor (IGF-1R). This differential phosphorylation is regulated by the C terminus of the β-subunit of the insulin receptor, the least conserved domain of the two receptors. In the present studies, deletion and site-directed mutagenesis in stably transfected hepatocytes derived from insulin receptor knockout mice (IR−/−) revealed that Tyr1316, which is replaced by the nonphosphorylatable phenylalanine in IGF-1R, regulated the differential phosphorylation of pp120 by the insulin receptor. Similarly, the nonconserved Tyr1316 residue also regulated the differential effect of pp120 on IGF-1 and insulin mitogenesis, with pp120 downregulating the growth-promoting action of insulin, but not that of IGF-1. Thus, it appears that pp120 phosphorylation by the insulin receptor is required and sufficient to mediate its downregulatory effect on the mitogenic action of insulin. Furthermore, the current studies revealed that the C terminus of the β-subunit of the insulin receptor contains elements that suppress the mitogenic action of insulin. Because IR−/− hepatocytes are derived from liver, an insulin-targeted tissue, our observations have finally resolved the controversy about the role of the least-conserved domain of insulin and IGF-1Rs in mediating the difference in the mitogenic action of their ligands, with IGF-1 being more mitogenic than insulin.


Sign in / Sign up

Export Citation Format

Share Document