Stimulation of prostacyclin synthesis by thromboxane A2-like prostaglandin endoperoxide analogues in cultured vascular smooth muscle cells

1984 ◽  
Vol 123 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Aviv Hassid
Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 709-709
Author(s):  
Mizuo Mifune ◽  
Hiroyuki Sasamura ◽  
Hideaki Nakaya ◽  
Ryoko Shimizu-Hirota ◽  
Matsuhiko Hayashi ◽  
...  

P84 Previously, we and others have shown that angiotensin II enhances vascular smooth muscle cell extracellular matrix synthesis via stimulation of the type 1 angiotensin (AT1) receptor. Recently, expression of the type 2 (AT2) receptor has been confirmed in the adult vasculature, but its role in vascular remodeling has not yet been fully defined. In particular, conflicting data from in vivo studies have reported that AT2 receptor inhibition may either attenuate or enhance vascular hypertrophy and fibrosis. The aim of this study was to clarify the effects of direct stimulation of AT2 receptors on collagen synthesis in vascular smooth muscle cells in vitro. Firstly, retroviral gene transfer was used to supplement adult vascular smooth muscle cells with AT2 receptors to mimic the vasculature in vivo. Treatment of these cells with the AT2 receptor agonist CGP42212A (10-7 mol/L) alone did not cause a significant change in p42/p44 MAP kinase activity, but caused a modest (33%) decrease in protein tyrosine phosphatase activity. Treatment with CGP42112A also caused a dose- and time-dependent increase in both cell-associated and secretory collagen synthesis (148+17% of control at 48 h, p<0.05) which was completely inhibited by the AT2 receptor antagonist PD123319, but unaffected by the AT1 receptor antagonist losartan. The AT2 receptor-mediated stimulation of collagen synthesis was unaffected by tyrosine phosphatase inhibitors sodium orthovanadate and okadaic acid, but attenuated by pretreatment with pertussis toxin or Galphai antisense oligonuclotides. These results suggest that direct AT2 receptor stimulation can increase rather than decrease collagen synthesis in vascular smooth muscle cells, and suggest a role for Galphai in the AT2 receptor-mediated effects.


Sign in / Sign up

Export Citation Format

Share Document