Inhibition of deoxyribonucleic acid polymerases α and β and terminal deoxynucleotidyl transferase from calf thymus by mitomycin C—deoxyribonucleic acid

1981 ◽  
Vol 30 (4) ◽  
pp. 299-303 ◽  
Author(s):  
Masao Tanaka ◽  
Shonen Yoshida
1968 ◽  
Vol 108 (5) ◽  
pp. 749-753 ◽  
Author(s):  
A R Fahmy ◽  
K Griffiths

The inhibition by diethylstilboestrol of DNA nucleotidyltransferase isolated from calf thymus was studied. The inhibition exercised by diethylstilboestrol appears to obey competitive kinetics with respect to DNA primer. The activities of both replicative and terminal enzymes were affected to the same extent. There was no evidence of binding between DNA and diethylstilboestrol. A comparative study of the inhibitory effects of some stilboestrol derivatives is presented. The alkyl substitution in the αα′-positions seem to alter the inhibitory effect of these compounds: dimethylstilboestrol was more inhibitory than stilbene, and diethylstilboestrol was more inhibitory than dimethylstilboestrol. Hexoestrol, in which the αα′-ethylenic linkage is saturated, was the most effective inhibitor.


Biochemistry ◽  
1980 ◽  
Vol 19 (10) ◽  
pp. 2096-2101 ◽  
Author(s):  
Marietta Y. W. Tsang Lee ◽  
Cheng-Keat Tan ◽  
Antero G. So ◽  
Kathleen M. Downey

2015 ◽  
Vol 35 (3) ◽  
pp. 1125-1136 ◽  
Author(s):  
Chuqi Yan ◽  
Dechao Kong ◽  
Dong Ge ◽  
Yanming Zhang ◽  
Xishan Zhang ◽  
...  

Background/Aims: Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease characterised by prominent synoviocyte hyperplasia and a potential imbalance between the growth and death of fibroblast-like synoviocytes (FLS). Mitomycin C (MMC) has previously been demonstrated to inhibit fibroblast proliferation and to induce fibroblast apoptosis. However, the effects of MMC on the proliferation and apoptosis of human RA FLS and the potential mechanisms underlying its effects remain unknown. Methods: Cell viability was determined using the Cell Counting Kit-8 assay. Apoptotic cell death was analysed via Annexin V-FITC/PI double staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labelling. The production of intracellular reactive oxygen species (ROS) was assessed via flow cytometry, and the changes in mitochondrial membrane potential (ΔΨm) were visualized based on JC-1 staining via fluorescence microscopy. The expression of apoptosis-related proteins was determined via Western blot. Results: Treatment with MMC significantly reduced cell viability and induced apoptosis in RA FLS. Furthermore, MMC exposure was found to stimulate the production of ROS and to disrupt the ΔΨm compared to the control treatment. Moreover, MMC increased the release of mitochondrial cytochrome c, the ratio of Bax/Bcl-2, the activation of caspase-9 and caspase-3, and the subsequent cleavage of poly(ADP-ribose) polymerase. Conclusion: Our findings suggest that MMC inhibits cell proliferation and induces apoptosis in RA FLS, and the mechanism underlying this MMC-induced apoptosis may involve a mitochondrial signalling pathway.


Sign in / Sign up

Export Citation Format

Share Document