Regeneration of mouse peripheral nerves in degenerating skeletal muscle: guidance by residual muscle fibre basement membrane

1984 ◽  
Vol 295 (2) ◽  
pp. 275-281 ◽  
Author(s):  
Roger J. Keynes ◽  
William G. Hopkins ◽  
Christopher L.-H. Huang
Author(s):  
D. E. Philpott ◽  
A. Takahashi

Two month, eight month and two year old rats were treated with 10 or 20 mg/kg of E. Coli endotoxin I. P. The eight month old rats proved most resistant to the endotoxin. During fixation the aorta, carotid artery, basil arartery of the brain, coronary vessels of the heart, inner surfaces of the heart chambers, heart and skeletal muscle, lung, liver, kidney, spleen, brain, retina, trachae, intestine, salivary gland, adrenal gland and gingiva were treated with ruthenium red or alcian blue to preserve the mucopolysaccharide (MPS) coating. Five, 8 and 24 hrs of endotoxin treatment produced increasingly marked capillary damage, disappearance of the MPS coating, edema, destruction of endothelial cells and damage to the basement membrane in the liver, kidney and lung.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
David P. McBey ◽  
Michelle Dotzert ◽  
C. W. J. Melling

Abstract Background Intensive-insulin treatment (IIT) strategy for patients with type 1 diabetes mellitus (T1DM) has been associated with sedentary behaviour and the development of insulin resistance. Exercising patients with T1DM often utilize a conventional insulin treatment (CIT) strategy leading to increased insulin sensitivity through improved intramyocellular lipid (IMCL) content. It is unclear how these exercise-related metabolic adaptations in response to exercise training relate to individual fibre-type transitions, and whether these alterations are evident between different insulin strategies (CIT vs. IIT). Purpose: This study examined glycogen and fat content in skeletal muscle fibres of diabetic rats following exercise-training. Methods Male Sprague-Dawley rats were divided into four groups: Control-Sedentary, CIT- and IIT-treated diabetic sedentary, and CIT-exercised trained (aerobic/resistance; DARE). After 12 weeks, muscle-fibre lipids and glycogen were compared through immunohistochemical analysis. Results The primary findings were that both IIT and DARE led to significant increases in type I fibres when compared to CIT, while DARE led to significantly increased lipid content in type I fibres compared to IIT. Conclusions These findings indicate that alterations in lipid content with insulin treatment and DARE are primarily evident in type I fibres, suggesting that muscle lipotoxicity in type 1 diabetes is muscle fibre-type dependant.


Diabetes ◽  
1985 ◽  
Vol 34 (4) ◽  
pp. 321-325 ◽  
Author(s):  
M. Mauer ◽  
M. Steffes ◽  
E. Johnson ◽  
S. Rich ◽  
B. Hoogwerf ◽  
...  

Author(s):  
Yingxin Gao ◽  
Alan S. Wineman ◽  
Anthony M. Waas

There is experimental evidence to suggest that extensible connective tissues are mechanically time-dependent. In view of this, the mechanics of time-dependent lateral stress transfer in skeletal muscle is investigated by employing a viscoelastic shear lag model for the transfer of tensile stress between muscle fibres and the surrounding extracellular matrix (ECM) by means of shear stresses at the interface between the muscle fibre and the ECM. The model allows for both mechanical strains in the muscle as well as the strain owing to muscle contraction. Both the ECM and the muscle fibre are modelled as viscoelastic solids. As a result, time-dependent lateral stress transfer can be studied under a variety of loading and muscle stimulation conditions. The results show that the larger the muscle fibre creep time relative to the ECM relaxation time, the longer it takes for the muscle fibre stress to relax. It also shows that the response of the muscle–ECM composite system also depends on the characteristic time of a strain history relative to the characteristic relaxation time of the ECM. The results from the present model provide significant insight into the role of the parameters that characterize the response of the muscle composite system.


Cell ◽  
1994 ◽  
Vol 76 (1) ◽  
pp. 117-129 ◽  
Author(s):  
David Westaway ◽  
Stephen J. DeArmond ◽  
Juliana Cayetano-Canlas ◽  
Darlene Groth ◽  
Dallas Foster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document