Pharmacological characterization of apoptotic cell death in a model of photothrombotic brain injury in rats

1996 ◽  
Vol 734 (1-2) ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Kharlamov ◽  
Tolga Uz ◽  
Jin-Yang Joo ◽  
Hari Manev
2008 ◽  
Vol 37 (1) ◽  
pp. 16-24 ◽  
Author(s):  
V. Tashlykov ◽  
Y. Katz ◽  
A. Volkov ◽  
V. Gazit ◽  
S. Schreiber ◽  
...  

2000 ◽  
Vol 20 (4) ◽  
pp. 669-677 ◽  
Author(s):  
Ronny Beer ◽  
Franz Gerhard ◽  
Marion Schöpf ◽  
Markus Reindl ◽  
Bernhard Zelger ◽  
...  

Apoptotic cell death plays an important role in the cascade of neuronal degeneration after traumatic brain injury (TBI), but the underlying mechanisms are not fully understood. However, increasing evidence suggests that expression of Fas and its ligand (FasL) could play a major role in mediating apoptotic cell death in acute and chronic neurologic disorders. To further investigate the temporal pattern of Fas and FasL expression after experimental TBI in the rat, male Sprague Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for Fas and FasL protein expression and for immunohistologic analysis at intervals from 15 minutes to 14 days after injury. Increased Fas and FasL immunoreactivity was seen in the cortex ipsilateral to the injury site from 15 minutes to 72 hours after the trauma, respectively. Immunohistologic investigation demonstrated a differential pattern of Fas and FasL expression in the cortex, respectively: increased Fas immunoreactivity was seen in cortical astrocytes and neurons from 15 minutes to 72 hours after the injury. In contrast, increased expression of FasL was seen in cortical neurons, astrocytes, and microglia from 15 minutes to 72 hours after impact injury. Concurrent double-labeling examinations using terminal deoxynucleotidyl tranferase-mediated deoxyuridine-biotin nick end labeling identified Fas- and FasL-immunopostive cells with high frequency in the cortex ipsilateral to the injury site. In contrast, there was no evidence of Fas- and FasL-immunopositive cells in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. Further, Fas and FasL immunoreactivity was absent in the contralateral cortex and hippocampus at all time points investigated. These results reveal induction of Fas and FasL expression in the cortex after TBI in the rat. Further, these data implicate an involvement of Fas and FasL in the pathophysiologic mechanism of apoptotic neurodegeneration after TBI. Last, these data suggest that strategies aimed to repress posttraumatic Fas- and FasL-induced apoptosis may open new perspectives for the treatment of TBI.


2019 ◽  
Vol 97 (12) ◽  
pp. 1627-1641 ◽  
Author(s):  
Saurav Bhowmick ◽  
Veera D’Mello ◽  
Danielle Caruso ◽  
P. M. Abdul-Muneer

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e33856 ◽  
Author(s):  
Liat Josefsberg Ben-Yehoshua ◽  
Katia Beider ◽  
Avichai Shimoni ◽  
Olga Ostrovsky ◽  
Michal Samookh ◽  
...  

1997 ◽  
Vol 17 (11) ◽  
pp. 1143-1151 ◽  
Author(s):  
Matthias Endres ◽  
Zhao-Qi Wang ◽  
Shobu Namura ◽  
Christian Waeber ◽  
Michael A. Moskowitz

Poly(ADP-ribose)polymerase (PARP, EC 2.4.2.30), an abundant nuclear protein activated by DNA nicks, mediates cell death in vitro by nicotinamide adenine dinucleotide (NAD) depletion after exposure to nitric oxide. The authors examined whether genetic deletion of PARP (PARP null mice) or its pharmacologic inhibition by 3-aminobenzamide (3-AB) attenuates tissue injury after transient cerebral ischemia. Twenty-two hours after reperfusion following 2 hours of filamentous middle cerebral artery occlusion, ischemic injury was decreased in PARP−/− and PARP+/− mice compared with PARP+/+ litter mates, and also was attenuated in 129/SV wild-type mice after 3-AB treatment compared with controls. Infarct sparing was accompanied by functional recovery in PARP−/− and 3-AB–treated mice. Increased poly(ADP-ribose) immunostaining observed in ischemic cell nuclei 5 minutes after reperfusion was reduced by 3-AB treatment. Levels of NAD—the substrate of PARP—were reduced 2 hours after reperfusion and were 35% of contralateral levels at 24 hours. The decreases were attenuated in PARP−/− mice and in 3-AB–treated animals. Poly(ADP-ribose)polymerase cleavage by caspase-3 (CPP-32) has been proposed as an important step in apoptotic cell death. Markers of apoptosis, such as oligonucleosomal DNA damage, total DNA fragmentation, and the density of terminal deoxynucleotidyl transferase dUTP nick-end–labelled (TUNEL +) cells, however, did not differ in ischemic brain tissue of PARP−/− mice or in 3-AB–treated animals versus controls, although there were differences in the number of TUNEL-stained cells reflecting the decrease in infarct size. Thus, ischemic brain injury activates PARP and contributes to cell death most likely by NAD depletion and energy failure, although the authors have not excluded a role for PARP in apoptotic cell death at earlier or later stages in ischemic cell death. Inhibitors of PARP activation could provide a potential therapy in acute stroke.


Sign in / Sign up

Export Citation Format

Share Document