Synergistic effects of phorbol ester and interferon-α: Target cell class I HLA antigen expression and resistance to natural killer and lymphokine-activated killer cell-mediated cytolysis

1991 ◽  
Vol 134 (2) ◽  
pp. 325-335 ◽  
Author(s):  
Kiyoshi Migita ◽  
Katsumi Eguchi ◽  
Itaru Akiguchi ◽  
Ida Hiroaki ◽  
Atsushi Kawakami ◽  
...  
Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2288-2301 ◽  
Author(s):  
BS Edwards ◽  
MS Curry ◽  
EA Southon ◽  
AS Chong ◽  
LH Jr Graf

Dithiothreitol (DTT) activation of the adhesive function of several different integrins suggests the existence of a common DTT-sensitive integrin regulatory element. Ui11/E3, a natural killer (NK) cell- resistant murine target cell line genetically engineered to constitutively express human intercellular adhesion molecule-1 (ICAM-1; CD54) was used in a flow cytometric experimental model to evaluate DTT effects on the NK cell integrin adhesion molecule, leukocyte function antigen-1 (LFA-1; alpha L beta 2, CD11a/CD18). DTT and several structurally related dithiol compounds elicited a dramatic elevation in conjugate formation that was dependent on target cell ICAM-1 expression, was blocked by LFA-1 alpha L or beta 2 chain-specific antibodies, and occurred in the absence of Ui11/E3 target cell exposure to DTT or quantitative changes in NK cell membrane LFA-1 expression. This avidity modulation of LFA-1 by DTT required actin polymerization, was abrogated by the protein kinase C inhibitor calphostin C, involved activities of calyculin A- and okadaic acid-sensitive serine/threonine protein phosphatases PP-1 and/or PP-2A but not geldanamycin-sensitive tyrosine kinases, and differed with respect to kinetics and enzyme inhibitor sensitivity from LFA-1 activation promoted by cross-linking of NK cell CD16 or phorbol ester treatment. A key structural feature of DTT was the presence of two thiol groups, both reduced but not physically adjacent as in the nonstimulatory dithiol, 2,3- dimercaptopropanol. LFA-1 activation was not because of DTT chelation of Ca2+ or Zn2+. Immunoblotting studies identified multiple NK cell plasma membrane-associated proteins to be reduced by DTT under LFA-1- activating conditions, but similar effects were also promoted by reducing agent treatments that failed to alter adhesive function. Direct chemical modification of LFA-1 seemed an unlikely basis of activation because (1) DTT activated LFA-1 in HSB2 T cells without detectable disulfide reduction in LFA-1 alpha L or beta 2 chains immunoprecipitated from these cells and (2) DTT treatment of NK cells did not hinder binding of KIM127 and KIM185, monoclonal antibodies that recognize epitopes in the potentially DTT-susceptible cysteine-rich domain of the beta 2 chain. Thus, these results extended the range of DTT-activatible integrins to include NK cell LFA-1 and characterized for the first time signaling-associated enzymatic activities involved in DTT activation of NK cell LFA-1. Moreover, they suggested that structural features of DTT, particularly SH group spatial positioning, are important in LFA-activation for reasons other than cation chelation or disulfide reduction.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
pp. 152-155
Author(s):  
Walter J. Storkus ◽  
Peter Cresswell ◽  
Eric B. Patterson ◽  
Jeffrey R. Dawson

1999 ◽  
Vol 190 (7) ◽  
pp. 1005-1012 ◽  
Author(s):  
Mikael Eriksson ◽  
Guenther Leitz ◽  
Erik Fällman ◽  
Ove Axner ◽  
James C. Ryan ◽  
...  

Inhibitory receptors expressed on natural killer (NK) cells abrogate positive signals upon binding corresponding major histocompatibility complex (MHC) class I molecules on various target cells. By directly micromanipulating the effector–target cell encounter using an optical tweezers system which allowed temporal and spatial control, we demonstrate that Ly49–MHC class I interactions prevent characteristic cellular responses in NK cells upon binding to target cells. Furthermore, using this system, we directly demonstrate that an NK cell already bound to a resistant target cell may simultaneously bind and kill a susceptible target cell. Thus, although Ly49-mediated inhibitory signals can prevent many types of effector responses, they do not globally inhibit cellular function, but rather the inhibitory signal is spatially restricted towards resistant targets.


Genomics ◽  
1996 ◽  
Vol 35 (1) ◽  
pp. 270-272 ◽  
Author(s):  
Yumiko Suto ◽  
Katsumi Maenaka ◽  
Toshio Yabe ◽  
Momoki Hirai ◽  
Katsushi Tokunaga ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (6) ◽  
pp. 1166-1174 ◽  
Author(s):  
Cyril Fauriat ◽  
Martin A. Ivarsson ◽  
Hans-Gustaf Ljunggren ◽  
Karl-Johan Malmberg ◽  
Jakob Michaëlsson

Abstract Expression of inhibitory killer cell immunoglobulin-like receptors (KIRs) specific for self–major histocompatibility complex (MHC) class I molecules provides an educational signal that generates functional natural killer (NK) cells. However, the effects of activating KIRs specific for self-MHC class I on NK-cell education remain elusive. Here, we provide evidence that the activating receptor KIR2DS1 tunes down the responsiveness of freshly isolated human NK cells to target cell stimulation in donors homozygous for human leukocyte antigen (HLA)–C2, the ligand of KIR2DS1. The tuning was apparent in KIR2DS1+ NK cells lacking expression of inhibitory KIRs and CD94/NKG2A, as well as in KIR2DS1+ NK cells coexpressing the inhibitory MHC class I–specific receptors CD94/NKG2A and KIR2DL3, but not KIR2DL1. However, the tuning of responsiveness was restricted to target cell recognition because KIR2DS1+ NK cells responded well to stimulation with exogenous cytokines. Our results provide the first example of human NK-cell education by an activating KIR and suggest that the education of NK cells via activating KIRs is a mechanism to secure tolerance that complements education via inhibitory KIRs.


Sign in / Sign up

Export Citation Format

Share Document