Effect of drying history upon the exchange of pore water with methanol and upon subsequent methanol sorption behaviour in hydrated alite paste

1981 ◽  
Vol 11 (5-6) ◽  
pp. 651-658 ◽  
Author(s):  
L.J. Parrott
1997 ◽  
Vol 506 ◽  
Author(s):  
L.R. Van Loon ◽  
M.A. Glaus ◽  
S. Stallone ◽  
A. Laube

ABSTRACTThe sorption of radionuclides on repository components (e.g. cement) is an important process since it controls the release of radionuclides from the repository [1]. A strong sorption of radionuclides is desirable since it will allow only a small release of radionuclides to the geo-and biosphere. The strong sorption behaviour of radionuclides, however, could possibly be decreased by several orders of magnitude by the presence of organic ligands. Ligands such as EDTA, NTA, citric acid etc. are inherent components of radioactive waste since these complexing agents are used in nuclear power stations for decontaminating purposes. Other ligands might be formed by degrading organic polymers present in low and intermediate level radioactive waste [2, 3]. Cellulose materials such as cotton, paper and wood form a substantial part (ca. 50 %) of the organic waste [1]. The use of large amounts of cement for constructing a repository causes alkaline environments in which the pH of the pore solution will remain above 12.5 for periods of the order of 105 years [4]. It is well known from the literature that cellulose is unstable under alkaline conditions and will degrade to water soluble, low molecular weight compounds by the peeling-off reaction [5]. The main degradation product of cellulose is isosaccharinic acid (ISA), which is stable under alkaline conditions [5-10]. ISA enhances the solubility of Pu(IV) [7, 8] and has an adverse effect on the sorption of Eu(III), Th(IV) and Ni(II) [6]. For instance, in a solution of 10-3 M ISA, the solubility of Pu(IV) at pH 12 increases by a factor of 20000 [11]. The sorption of Pu(IV) [8], Eu(III), Th(IV) and Ni(II) [6], however, was affected to only a minor extent. The observed effects were - by analogy with gluconic acid [12] - interpreted to be due to a strong complexation of these metals. The concentration of ISA in the pore water is the key parameter for evaluating its effect on radionuclide sorption [13].A full assessment of the effect of cellulose degradation on the sorption requires a detailed understanding of the mechanisms involved. The present study gives an overview of the different processes involved and describes how to quantify the concentration of isosaccharinic acid in the pore water of a repository.


1985 ◽  
Vol 50 ◽  
Author(s):  
S. Höglund ◽  
L. Eliasson ◽  
B. Allard ◽  
K. Andersson ◽  
B. Torstenfelt

AbstractThe sorption of some actinides (Th, U, Np, Pu and Am) and fission products (I, Cs) was measured on two types of Standard Portland cements as well as on samples from old (70 years) hydro power dam constructions using a batch technique. Pore water compositions were analysed, and artificial pore water solutions were used as aqueous phases in the experiments. Measurements were also performed on five other concrete types (not reported in detail in this paper) to illustrate the effects of the cement matrix composition on the sorption behaviour of the radionuclides.The sorption of actinides in the trivalent (americium), tetravalent (thorium) pentavalent (neptunium) and hexavalent (uranium) states was high in all the studied concrete systems.Generally, the sorption of cesium was low due to the low exchange capacity of the cement and the high concentration of competing cations in the pore waters.The sorption of iodine was much higher than in most silicate minerals of geologic origin.The differences between the various concrete systems were generally minor in terms of their sorbing capacities.


Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2018 ◽  
Vol 35 (2) ◽  
pp. 111
Author(s):  
Kun ZHANG ◽  
Ze ZHANG ◽  
Xiangyang SHI ◽  
Sihai LI ◽  
Donghui XIAO

2006 ◽  
Author(s):  
Stephen W. Webb ◽  
James M. Phelan ◽  
Teklu Hadgu ◽  
Joshua S. Stein ◽  
Cedric M. Sallaberry

Sign in / Sign up

Export Citation Format

Share Document